
548D -rATION PAGE Form Approved

AD - 267 548 rATON AGEMF No 02704 0188 .b
I'o;I•;: ,L •L::,':.'..2:I. .:.o. •,• 2, ... . V•,•.. v' .... ,...... , *;O.. ,-,' ,. II-i, ¶L, , •

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3I REPORT TYPE AND DATES COVERED

June 1993 THESISS
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Implementing a 50x50 Gravity Field Model in an Orbit
Determination System

'6. AUTHOR(S)

Daniel John Fonte, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NJUMBER

AFIT Student At tending: Massachusetts Institute of AFIT/CI/CIA- 93-089
Technology

9. SPONSORING.'MONITORING AGENCY NAME(S) AND ADDRESS(ES) T ] 10. SPONSORING/MONITORING

DEPARTMENT OF THE AIR FORCE r• AGENCY REPORT NUMBER
AFIT/CI T I
2950 P STREET ELECTE
WRIGHT-PATTERSON AFB OH 45433-7765 AUG6 199

11. SUPPLEMENTARY NOTES c

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release IAW 190-1
Distribution Unlimited
MICHAEL M. BRICKER, SMSgt, USAF
Chief Administration

13. ABSTRACT (Maximum 200 words)

8ftoo 093-18069ifo 8 0,5 llllrllllliMlll

114. SUBJECT TERMS 15. NUMBER OF PAGES

315
16. PRICE CODE

17 ECURITY CLASSIFICATION I18, SECURITY CLASSIFICATION j19. SECURITY CLASSIFICATION 20. LIMITATION Of ABSTRACT
OF REPO RT OF THIS PAGE OF ABSTRACT

NSN 7540-01-8,3-5500 S1,177 -orm 298 (Rev 2-89)

I>'..w, t. ;. d . a



SAc'.---- u •, -•o

IMPLEMENTING A 50x50 GRAVITY FIELD MODEL IN AN ,,

ORBIT DETERMINATION SYSTEM i..

by By
Daniel John Fonte, Jr. Al h od

Av~i.ljIr)jy Codes

Submitted to the Department of Aeronautics and Astronautics A,.J ,I 1ior
on May 7, 1993 in partial fulfillment of the Dist

requirements for the Degree of Master of Science -\

ABSTRACT

The Kepler problem treats the earth as if it is a spherical body of uniform density. In

actuality, the earth's shape deviates from a sphere in terms of latitude (described by zonal

harmonics), longitude (sectorial harmonics), and combinations of both latitude and
longitude (tesseral harmonics). Operational Orbit Determination (OD) systems in the
1960's focused on the effects of the first few zonal harmonics since (1) they represented

the dominant terms of the geopotential perturbation, (2) they were well known, and (3) the

use of a limited number of harmonics greatly simplified the perturbation theory used. The

demand for increasingly accurate modeling of a satellite's motion, combined with an
increase in knowledge of the geopotential and an advancement in computer technology, led

to the inclusion of tesseral harmonics. The Draper Laboratory version of the Goddard
Trajectory Determination System (R&D GTDS), one operational OD system, can currently

implement up to a 21x21 gravity field model in its Cowell and Semianalytic Satellite Theory
(SST) orbit generators. This thesis investigates the extension of R&D GTDS to include a

50x50 gravity field model in the Cowell and SST orbit generators. This extension would
require code modifications in the following environments to support the various operational
versions of R&D GTDS: IBM, VAX, Sun Workstation, and Silicon Graphics. In each of

these environments, the Legendre polynomials, associated Legendre polynomials, Jacobi

polynomials, Hansen coefficients, and harmonic coefficients must be investigated to
determine if (1) overflow/underflow boundaries would be violated in computations or (2) a
loss of accuracy would occur in computations of high degree and order. This investigation

will determine whether normalized or un-normalized components of the potential must be

used.
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ABSTRACT

The Kepler problem treats the earth as if it is a spherical body of uniform density. In
actuality, the earth's shape deviates from a sphere in terms of latitude (described by zonal
harmonics), longitude (sectorial harmonics), and combinations of both latitude and
longitude (tesseral harmonics). Operational Orbit Determination (OD) systems in the

1960's focused on the effects of the first few zonal harmonics since (1) they represented
the dominant terms of the geopotential perturbation, (2) they were well known, and (3) the
use of a limited number of harmonics greatly simplified the perturbation theory used. The
demand for increasingly accurate modeling of a satellite's motion, combined with an
increase in knowledge of the geopotential and an advancement in computer technology, led

to the inclusion of tesseral harmonics. The Draper Laboratory version of the Goddard
Trajectory Determination System (R&D GTDS), one operational OD system, can currently
implement up to a 21 x21 gravity field model in its Cowell and Semianalytic Satellite Theory
(SST) orbit generators. This thesis investigates the extension of R&D GTDS to include a
50x50 gravity field model in the Cowell and SST orbit generators. This extension would
require code modifications in the following environments to support the various operational
versions of R&D GTDS: IBM, VAX, Sun Workstation, and Silicon Graphics. In each of
these environments, the Legendre polynomials, associated Legendre polynomials, Jacobi
polynomials, Hansen coefficients, and harmonic coefficients must be investigated to
determine if (1) overflow/underflow boundaries would be violated in computations or (2) a
loss of accuracy would occur in computations of high degree and order. This investigation
will determine whether normalized or un-normalized components of the potential must be

used.
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Chapter 1

Introduction

1.1 Background

The Kepler problem treats the earth as if it is a spherical body with uniform density. Even

though this treatment serves to provide an adequate approximation or "first guess" of a

satellite's motion, the contributions of perturbations have been neglected. The major

perturbations which cause a satellite to deviate from Kepler motion are the non-spherical

gravitational effects of the earth, atmospheric drag, solar radiation pressure, third-body

gravitational effects, and thrust. Dominant among these perturbations for near-earth

satellites are the non-spherical earth contributions. In actuality, the earth is not spherical

and does not possess an uniform distribution of density as is assumed in the Kepler

problem. These irregularities contribute secular, long-period, and short-period variations

to a satellite's motion. Secular variations imply that an element would either increase or

decrease monotonically from initial values. On the other hand, periodic variations produce

element values which oscillate about the initial element values; long-period variations arise

due to the presence of sinusoidal terms with arguments containing the slowly varying

elements, while short-period variations arise from sinusoidal terms with the fast element in

the argument. The following expression is an hypothetical example of how each of these

variations add up to the total variance in an element, c [221:

c = co + ct t+A sin (o)+ B cos(M +co) (1.1)
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where t is time, A and B are coefficients, co is the argument of perigee (the slow variable)

and M is the mean anomaly (the fast variable). The first term is the initial condition; the

second term is the secular variation; and the third and fourth terms are the long-period and

short-period variations, respectively. Note that short-period variations can arise from

sinusoidal terms of linear combinations of both fast elements and slowly varying elements.

Again, it only matters that the fast element is present.

The geopotential, the potential function derived to model the effects of the non-spherical

earth, describes deviations from two-body symmetry in terms of latitude (described by

zonal harmonics), longitude (sectorial harmonics), and combinations of both latitude and

longitude (tesseral harmonics). One common form of the geopotential involves spherical

harmonics [26]:

n=2 m 1 (1.2)

where

g is the gravitational parameter

Re is the mean equatorial radius of the earth

r is the distance of the satellite from the origin of the coordinate system

reference frame

Pn,m(x) is an associated Legendre polynomial of degree n, order m, and

argument x

Sis the satellite's latitude measured relative to the coordinate system

reference frame

Cn,m, Sn,m are the spherical harmonic coefficients which are determined

empirically for a given body
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X the body-fixed longitude of the satellite (measured positive eastward from

the Greenwich Meridian)

The zonal harmonics, sectorial harmonics, and tesseral harmonics imbedded within this

expression can be identified with the conditions established in Table 1.1:

Table 1.1 Harmoi" Co.t ,tions

Zonal Harmonics Sectorial Harmonics Tesseral Harmonics

m=0 n=m n~m

m•0 m*0

Orbit Determination (OD) systems in the 1960's used truncated versions of this potential

which incorporated only the first few zonal harmonics. A geopotential representation of

this form was used for several reasons: (1) this "zonal" form of the potential represented a

greatly simplified version of the "full" potential; (2) the zonal harmonics represented the

dominant contributions of the non-spherical earth perturbation; hence, this form would

capture the dominant contributions to the motion; and (3) limited empirical data was

available for the harmonic coefficients; therefore, "full" potential representations would

have insufficient data for complete implementation.

In order to understand the first reason entirely, the distinction between general and special

perturbation techniques needs to be explained. Initially, two methods were available to

account for the effects of perturbations--special and general perturbation techniques.

Special perturbation methods deal with a direct numerical integration of the equations of

motion to include the perturbing accelerations [2]. For example, Cowell methods augment

the two-body equation of motion with the various perturbing accelerations. Integration of
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this augmented equation of motion produces a satellite's velocity and position--a velocity

and position which account for the various perturbations acting on the satellite. Chapter 2

will describe Cowell Methods and their use in an orbit determination (OD) system.

Special perturbation techniques are not limited solely to the propagation of position and

velocity vectors. The Lagrangian and Gaussian VOP equations provide sets of expressions

which determine how the orbital elements are affected by the various perturbations. The

orbital element rates of change resulting from the VOP equations can be integrated over a

desired time period in a special perturbation fashion to determine updated orbital elements

which have been corrected for the applicable perturbations. Wright [65] presents an high

precision application of VOP for definitive geocentric orbits.

With special perturbation techniques, multiple time steps and force evaluations are needed

to "step" from a given set of initial conditions to a final solution which "describes" a

satellite's motion throughout an orbit. If the initial conditions are changed or altered, new

evaluations must be made at each of the various time steps. Therefore, each solution is

unique to a given set of initial conditions. For applications in which a large amount of

satellite ephemerides must be determined, special perturbation techniques have the potential

to consume large amounts of precious computation time in order to step through all of the

various orbits. In addition, small time steps are needed to accurately model a satellite's

motion. Generally, the time step for integration is 1/5 to 1/10 of the smallest wavelength

included in the dynamics which, for short-period contributions, can be restrictive. The

increased number of steps which accompany these small time steps add to round-off and

truncation error, as well as serving to further increase the computation time of special

perturbation techniques. To summarize, special perturbation techniques provide a classic

trade-off between computation time and result accuracy.
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General perturbation techniques, on the other hand, do not use multiple time steps to

transfer from a set of initial conditions to a final solution. Rather, general perturbation

techniques provide analytical formulae which are used to predict a satellite's motion usually

with the aid of series approximations to model the effects of the various perturbations. A

set of specified initial conditions can be inserted into the analytic expressions to directly

determine the perturbed motion of the satellite. If the motion of a new (different) satellite is

to be determined, the corresponding initial conditions are inserted into the analytic

expressions to compute results; multiple time steps are not needed each time the motion of a

new (different) satellite is to be determined. For this reason, general perturbation

techniques are computationally more efficient than special perturbation techniques.

However, it classically has been difficult and time consuming to derive the closed form

analytic expressions characteristic of general perturbation techniques. Furthermore, the

length of the closed form expressions (if they can be determined) can potentially strain the

storage requirements or computation time of the computer involved. As a result, truncated

or simplified models have been used, which serve to degrade the accuracy of the results.

Since special perturbation techniques were computationally demanding, computer

technology was not as advanced in the early 1960's as it is today, and few early space

missions were dedicated to expanding the knowledge of the harmonic coefficients, initial

OD systems were based upon general perturbation techniques. These techniques, which

were designed to achieve the maximum computational efficiency with moderate prediction

accuracy [1], incorporated the use of simplified "zonal" forms of the potential. What

resulted were OD systems that were operational, but of limited accuracy due to the

simplifying assumptions inherent in the general perturbation methods. The Simplified

General Perturbation (SGP) theory utilized by NORAD is one such OD system. This

system was optimized for low-eccentricity and non-equatorial orbits [29]. The theory

includes the zonal harmonics J2 and J3 , secular and long-periodic terms truncated to the
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square of the eccentricity O(e 2 ), and a few selected short-period terms from the

Aeronutronic Complete First-Order General Perturbations theory (AGP; SGP is a truncated

form of AGP).

As time progressed, an increase in knowledge of the potential was accompanied by an

increase in computer technology and an expanded knowledge of the harmonic coefficients.

Faster computers with larger storage capacities permitted the numerical integration required

by special perturbation techniques. By the late 1960's, OD systems bcgan to incorporate

tesseral harmonics of low degree and order with the use of special perturbation techniques.

For low-altitude satellites, it was shown that short-period tesseral harmonics terms

contribute errors in the 100-200 m range for degree and order up to three [12]. Tesseral m-

dailies, which result as a special case of the tesseral harmonics, were shown to produce the

following additional effects on low-altitude satellites for low degree and order combinations

[121:

Table 1.2 Maximum M-Daily Errors

Harmonic Radial (m) Cross-Track (m) In-Track (m)

J2,2 --- 260 790

J3,1 300 --- 600

J3,2 65 --- 130

J3,3 75 --- 150

J4,1 --- 225 590

J4,2 --- 90 270

J4,3 --- 75 210

J4,4 40 100
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Obviously, the effects of tesseral harmonics were proven to be significant and in need of

consideration. Gaposchkin [251 and Cefola [9] confirm that 8x8 and 16x16 gravity field

models (zonal and tesseral harmonics through degree ,nd order 8 and 16) became widely

used in orbit determination algorithms.

Knowledge of the potential continued to increase, particularly of the effects contributed by

higher degree zonal and tesseral harmonic terms. To summarize [ 12], it was found that

higher degree zonal terms (J6 through J 18 ) •ould cause positional errors on the order of

500 m or 1000 m after just 10 revolutions of a 16 rev/day satellite. Tesseral resonance

terms, additional special case terms stemming from the tesseral harmonics, could also

contribute errors of this size. Therefore, work in the 1970's expanded OD systems to

include 21x21 class gravity field models.

In a similar fashion, the knowledge of harmonic coefficients increased. As was stated

earlier in this chapter, limited empirical data was available for the harmonic coefficients in

the 1960's. This limited amount of data can be accredited to a lack of technical knowledge

and resources dedicated to study the earth's gravitational force. From the 1970's through

the 1990's, resources vwere dedicated and technology was developed in an attempt to refine

the harmonic coefficients, which are determined through an analysis of large numbers of

diverse types of observations. From these observations, large numerical systems of

equations are built, permitting a simultaneous solution of several thousand unknowns

(depending on the desired number of coefficients) [35,37]. Classically, the observations

were collected from satellite tracking data. More recently, however, the observations have

been collected from combinations of satellite tracking, satellite altimeter, and surface

gravimetric data.
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As the size of gravity fields increased, it was noticed that values for the hamrnic

coefficients become smaller in magnitude with increasing degree and order. In order to

avoid ill-conditioned values for computation purposes, normalized coefficients became

readily available. These normalized coefficients, when combined with other normalized

components of the potential, produce results which are consistent with analogous un-

normalized values. Of particular interest are the harmonic coefficients of the Goddard

Earth Model (GEM) T3 generation. The collection of normalized coefficients in these

models are complete through degree and order 50.

This thesis focuses on updating Draper Laboratory's version of the Goddard Trajectory

Determination System (R&D GTDS) to implement 50x50 gravity field models in its Cowell

and Semianalytic Satellite Theory (SST) orbit generators. This modification would greatly

improve R&D GTDS's capability to model the effects of the non-spherical earth

perturbation upon a satellite's motion. The motivation to provide this expanded field stems

from specific accuracy goals established for space applications. For example, a scientific

mission may be designed to observe the surface wind and wave structure over the oceans

[621. A mission of this type would require very accurate knowledge of the satellite's

position. It is also important to consider satellites which are in low altitude, repeat-

groundtrack type orbits. Satellites of this type encounter significant tesseral harmonic

effects for degree and order combinations beyond the 21x21 field capability. Studies for

ERS- 1 show the following contributions of over 5 meters [62] (refer to table at top of next

page):
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Table 1.3 Tesseral Harmonic Effects Beyond 21x21 Fields

n m Radial Cross-Track Along-Track

(M) (M) (M)

23 15 0.2 1.0 9.4

30 29 0.3 1.5 23.4

34 29 0.1 0.4 5.5

36 29 0.1 0.3 5.4

43 43 0.2 1.2 200.2

44 43 1.8 0.1 7.7

45 43 0.4 1.9 319.2

The value:; for the order m represented in this table indicate tesseral resonance contributions

in that they are approximate multiples of the 14 1/3 rev/day rate for ERS-1 (more detail on

tesseral resonance will be given in Chapter 2). The 50x50 gravity field model would

capture these effects and, therefore, be useful in meeting accuracy goals.

In addition, the more exacting results stemming from the 50x50 gravity field model would

serve to ensure that the dominant error source in an orbit determination system would not

stem from the non-spherical earth perturbation. In this manner, theory is driven to be more

accurate than observations, which enhances the differential correction process. Other

advantages of using larger gravity field models can be studied with the addition of this

capability to the software.

Inherent in the task of expanding the gravity field model is determining the stability of

various components of the potential that are utilized for computational purposes within

R&D GTDS. In the Cowell orbit generator, the Legendre polynomials, associated
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Legendre polynomials, and harmonic coefficients must be analyzed. When investigating

terms of the potential beyond the current, un-normalized 21 x21 field capability, values for

the polynomials are quite large, while values for the coefficients are small. Therefore, a

study must be undertaken to determine if the magnitudes of these coefficients, polynomials,

or products of the coefficients and polynomials would violate the overflow and underflow

boundaries of the computer. Similarly, the harmonic coefficients, Hansen coefficients, and

Jacobi polynomials must be investigated in the SST orbit generator. If the machine

boundaries are exceeded, than a switch to normalized components is in order.

Currently, Draper Laboratory's version of GTDS is available in FORTRAN source code

for IBM Mainframes, VAX Stations, Sun Workstations, and Silicon Graphics

Workstations. The present approximate numerical boundaries for these computer systems

are compared in Table 1.4 (information taken from references 42 and 46):

Table 1.4 Current Numerical Boundaries for Computer Systems

System Underflow Boundary Overflow Boundary

IBM 10-77 1__+77

VAX -- REAL*4 10-38 10+38

VAX -- D-Floating 10- 3 8  10+38

VAX -- G-Floating 10-308 10+308

VAX -- Q-Floating 10-4932 10+4932

Sun Workstation 10-308 10+308

Silicon Graphics 10-308 10+308

where the values in this table represent REAL*8 (double precision) variables with the

exception of the Q-Floating option on the VAX (REAL* 16--double precision) and the VAX
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REAL*4 entry. The difference between REAL*4 and REAL*8 (D-floating

implementation) on the VAX is the number of decimal digits in the degree of precision; the

REAL*4 option typically has 7 decimal digits, while the REAL*8 (D-floating) option

typically has 16 decimal digits [46]. The G-Floating compiler option (11 bit exponent)

extends the dynamical range of default double precision (REAL*8, D-Floating) variables (8

bit exponent) on the VAX.

1.2 Thesis Overview

Chapter 2 examines the mathematical principles pertinent to this thesis. Specifically, a

general discussion of the non-spherical earth perturbation is given, followed by a

description of perturbation techniques, Cowell methods, and SST methods. Derivations

for the potential in terms of spherical harmonics, Keplerian elements, and singularity-free

equinoctial elements are presented. In addition, the specific effects of zonal and tesseral

harmonics are given. The chapter also derives a generic form for the VOP equations, with

specific details added for the Langrangian and Gaussian forms. The generalized method of

averaging is described.

Chapter 3 describes stability testing of the necessary components of the potential for the

expanded gravity field. This chapter lists the formulae used in R&D GTDS to compute the

Legendre polynomials, associated Legendre polynomials, Jacobi polynomials, and Hansen

coefficients. Results of stability testing are given, to include comparisons with "truth"

values.

Chapter 4 explains the code architecture of R&D GTDS which stems from the mathematical

techniques given in Chapter 2, as well as the various modifications that were needed in
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order to expand the gravity field model. Flow diagrams are presented where applicable.

Details of the structured code modification process are given. Functionality affected by the

code modifications are outlined. An explanation of applicable input card decks is

presented. A description of the evolution of GTDS from the Goddard Space Flight Center

to Draper Laboratory is given, with a focus on the capabilities added at Draper Laboratory.

Chapter 5 outlines the verification testing that was undertaken to ensure that the

modifications were correctly implemented and describes the impact of 50 x 50 gravity field

models in orbit determination.

Chapter 6 gives a summary, conclusions, and suggestions for further research.

Appendix A describes Keplerian and equinoctial elements.

Appendix B lists the code for HWIRE.FOR, a subroutine which sets options for the

averaged equations of motion , nd short periodics. This listing was provided so that a point

of reference would be available when the results of testing for the Semianalytic orbit

generator are described in Chapter 5.

Appendix C depicts radial error, cross track error, along track error, element history, and

element difference plots for test runs established to analyze the impact of 50x50 gravity

field models in orbit determination. These output plots correspond to testing described in

Chapter 5.

Appendix D depicts software tree plots for routines associated to the zonal short periodic

model associated to the Semianalytical Theory in GTDS. These plots augment other plots

given in Chapter 4.
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Appendix E lists the various software tools that were developed as part of this thesis.
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Chapter 2

Mathematical Techniques

2.1 Non-Spherical Earth Gravitational Attraction

Newton formulated the law of gravity by stating that any two point masses attract one

another with a force (magnitude) proportional to the product of their masses and inversely

proportional to the square of the distance between them [2]:

Fg = GMm or Fg =_ (GMmr
d2 r2 r (2.1)

where M and m represent the point masses, G is the universal gravitational constant (6.670

xlO-8 dyne cm 2/gm 2), and d (r) is the magnitude of the distance between the two masses (r

is vector distance). Restricting this equation to point masses allows treatment of the mass

of the bodies as if it was concentrated at the center of the bodies. However, when

considering the effects of perturbations on an earth satellite's orbit, the mass of the bodies

can no longer be treated in this fashion. In actuality, the earth is not a spherically

symmetric body but is bulged at the equator, flattened at the poles and is generally

asymmetric [2]. This irregular distribution of mass leads to the most dominant perturbation

on a near-earth satellite--the perturbation which stems from forces arising from the earth's

gravity field. Section 2.1 will analyze the central-body gravitational perturbation. First,

mathematical expressions for the non- spherical gravitational perturbation will be given,

followed by a discussion of spherical harmonics. Then, the specific perturbative effects of
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both zonal harmonics and tesseral harmonics will be discussed. Section 2.2 will discuss

perturbation techniques, with an emphasis on Cowell and Variation of Parameter methods.

Section 2.3 will highlight semianalytic methods, to include a discussion on the generalized

method of averaging.

2.1.1 Geopotential and Spherical Harmonics

Kreyszig [32] states that the gradient operator, V, can be used to transform some scalar

functions into vector fields.

V =-5i-+ y-J +-k~)x a ~)Z(2.2)

A scalar function which can be transformed to a vector field via the gradient operator is

referred to as a potential function or the potential of the corresponding vector field. A

gravity field is one such vector field that can be derived as the (negative) gradient of a

gravity potential function. If a body exists in this gravity field (i.e., a satellite), it will

experience a force due to gravity. A vector field, such as a gravity field, can be thought of

as an acceleration; a mass coupled with this acceleration produces a force. Mathematically,

this gravitational field can be expressed in the following manner:

Fieldgravity = Fgrav = - V V(x,y,z)Filgaiy=M (2.3)

where V is the gravity potential function which, for the earth, is referred to as the

geopotential. McClain [391 states that the particular form of this gravity potential function

associated with the gravitational force exerted by the attracting body depends on the mass
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distribution of that body. Several theorems from calculus can be used to derive the

geopotential.

The flux through an area aj is defined in the following manner:

0 = Fieldj- aj (2.4)

where Fieldj is the magnitude of the vector field in that area. The total flux through a

surface comprised of all areas aj is, then:

OtotaI = f Field • da (2.5)

If the mass of one of the bodies (m) is divided out of both sides of Newton's expression

for the force of gravity in (2.1), an expression for the gravity field results (remember, the

gravity field can be thought of as an acceleration):

Fieldgravity G M r
r2 r (2.6)

in which - GM is the magnitude and - is the direction of the gravity field. If the surface of

interest is considered to be a sphere (with area 4n r2), then the expression for total gravity

flux through this surface can be expressed as:

total grvity= f Fieldgravity * da = -GM 41c r2 - 4r GM
Jmire surface r2  (2.7)
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The mass of the large, attracting body (M--for example, the earth) can be re-expressed as a

summation of mass densities per unit volume at specific points within the mass body,

p(x,y,z):

M -f p(x,y,z)dv = f pdv (2.8)

where the function of x, y, and z will be left off for notational convenience. Substituting

(2.8) into (2.7) provides an alternative expression for the total gravity flux through the

surface of interest:

Cow gravity f Fieldgravity da = -4t G p dv
J J(2.9)

This expression can be simplified through the use of Gauss' divergence theorem:

f Field • da = f (V • Field)dv

where V. is the divergence, defined for a vector F with x, y, and z components as:

D Fx + Fy + Fz

ax ay aZ (2.11)

by which a vector is transformed into a scalar.

With the use of Gauss' divergence theorem, equation (2.9) can now be re-expressed:

Ototal•gravity = f(V" Field)dv = -f4 G p dv
5(2.12)

35



As stated in equation (2.3), the gravity field is the gradient of the gravity potential function

(with a negative sign added by definition):

Fieldgravity= - V V(x,y,z) (2.13)

Substituting (2.13) into (2.12), as well as canceling the minus signs, leads to the following

relationship:

f V2 V(x,y,z) dv f 4nt G p dv
(2.14)

The expression in (2.14) implies that the potential function must satisfy Poisson's equation:

V2 V(x,y,z) = 47 G p(x,y,z) (2.15)

At all points outside the attracting body, the density per unit volume vanishes, and (2.15)

reduces to Laplace's equation:

V2 V(x,y,z) = 0 (2.16)

The general solution to (2.16) yields the geopotential for the gravitational force exerted on a

satellite of mass m at the position (x,y,z) by an attracting body of arbitrary mass, M.

Specifying appropriate boundary conditions to this general solution leads to the solution for

a given mass configuration within the attracting body. McClain [391 uses the separation of

variables technique to arrive at the geopotential (which will be referred to as W in order to

differentiate it from some general potential function, V):
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00 nY, YGn.rn

n=0 m=0 (2.17)

where

Gnm = ( Pnm (sin 0) (Cnm cos m% + Sn.m sin mX) (2.18)

and

g is the gravitational parameter

Re is the mean equatorial radius of the earth

r is the distance of the satellite from the origin of the coordinate system

reference frame

Pn,m(x) is an associated Legendre polynomial of degree n, order m, and

argument x

* is the satellite's latitude measured relative to the same coordinate system

reference frame of r

Cn,m, Sn,m are the spherical harmonic coefficients which are determined

empirically for a given body

X the body-fixed longitude of the satellite (measured positive 'astward from

the Greenwich Meridian)

The term jOo corresponds to the two-body potential, and can be derived from the equation

governing two body motion:

• r

r2 r (2.19)
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in which - - is the magnitude of the two-body acceleration with direction r . As stated

r2 r

earlier in this chapter, a vector field (which can be thought of as an acceleration) is the

(negative) gradient of a potential. Therefore, if this two-body acceleration is integrated

(with t! inclusion of the negative sign), the two-body potential is found:

Vf0  r r (2.20)

MQClain [39] states that if the origin of the coordinate system is placed at the center of mass

of the attracting body, then the following can be proved:

N',0o= 0

(2.21)

i,1i =0

which leads to an alternate form for the geopotential:

!I I + = (r Pnm (sin 0) (Cn'm COS MX + Snm sin mX)J

n =2 m= 0

(2.22)

It should be noted that this derivation is not solely limited to spherical surfaces as was

assumed in (2.7); Purcell [52] extends a similar derivation for the flux of an electric field to

all surfaces and obtains the same result as for spherical surfaces. By analogy, this

gravitational derivation can be extended to all surfaces.
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The terms Pnm (sin 0)K cOs) mx are called spherical harmonics of degree n and order m,

where K represents the particular spherical harmonic coefficient Cn,m or Sn,m. These

spherical harmonics are used to describe the variation of the actual, pear-shaped earth from

the spherically symmetric earth of the two-body problem. The indices n and m are used to

differentiate between zonal harmonics (m = 0), sectorial harmonics (n = m, m # 0), and

tesseral harmonics (n * m, m * 0). The specific perturbative effects of both zonal and

tesseral harmonics will be discussed in the following sections (the sectorial harmonics are a

subset of the tesseral harmonics and wil! not be discussed independently); however, it is

first desirable to convert the spherical harmonic form of the potential given in (2.22) to a

form expressed in orbital elements. This conversion is useful if Variation of Parameter

(VOP) equations are used to describe the motion in the non spherical gravity field, as in

semianalytic theory. This formulation requires the partial derivatives of the potential with

respect to the orbital elements. In the subsequent paragraphs, this conversion will be

analyzed for two different sets of elements: Keplerian and equinoctial.

For Keplerian elements, the latitude (0) and longitude (X) are first converted to the

argument of latitude (u = co + f, where f is the true anomaly), inclination (i), longitude of

the ascending node (Q), and Greenwich hour angle (0, the angle measured westwardly in

the equatorial plane from Greenwich to the Vernal Equinox). This conversion corresponds

to a rotation of the spherical harmonics from the geocentric-equatorial frame to the

geocentric-orbital frame (in which the i axis points towards perigee and the orbit plane is

the "equatorial" plane after the rotation). Specifically, this conversion consists of the

following three rotations: (1) the i axis is rotated through the ascending node 92, (2) the

plane is rotated about the line of nodes through the inclination (to the orbital plane), and (3)

the resulting axis, x', is rotated in the orbital plane through the argument of perigee (o.
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Due to the complicated nature of these rotations, Kaula [311 takes a brute force approach to

transforming the spherical harmonics. He substitutes expressions for the latitude and

longitude in terms of the orbital elements and expands. One such expression, the

inclination function, is determined in the following fashion 131:

Fnnp(i) = I (2n-2t)! sin-n--2t i

St! (n-t)! (n-m-2t)! 222(2.23)

X = I ( )Cs J: - -t m -s (_l)Ck
S=0 s c ) (p-t--C)

where k is the integer part of (n-m)/2, t is summed from 0 to the lesser of p or k, and c is

summed over all values making the binomial coefficients non zero.

Since this expression is quite involved, Kaula recommends its use solely for computer

algorithms. For hand calculations, he presents several values for this function--a few of

which are listed in Table 2.1 [31]:

Table 2.1 Inclination Function Values

n m p Fnmp(i)
- 3 sin2 i

2 0 0 _
3 sin2 i 1

2 0 14 2
- 3 sin2 i

2 0 2 8
3 sin i (I + cos i)

2 1 0_4

where p is the inclination function index.

Second, the position (r) and the true anomaly (f) are replaced with the semi-major axis (a),

mean anomaly (M), and the eccentricity (e). This replacement facilitates a simple
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relationship with the time and the isolation of terms which contribute to resonance.

However, it does require the introducdon of the eccentricity function, Gnpq(e) [31]:

I P (2dn--1 2d+n-2p') e.2d4-n-2p'
Gp*ne)= (l-2) 1f ~ 2~ 2~~P)()d1-P (2.24)

in which

p' = p for p n/2 (2.25)
p' = n-p for p _> n/2

The analogous expression for short period terms (n-2p+q) # 0 is much more difficult and

can be found in Kaula. Table 2.2 [31) lists a few representative values for the eccentricity

function:

Table 2.2 Eccentricity Function Values

n p q GnpQ(e)
2 0 0 1I-_ 5C2-+ 1_3f4 +"..

2 0 0 2 16
7e 123e 3 +

2 0 1 2 16
_e0+e9 +

2 0 -1 2 16 _

3 2 1e(l-e2)-5/2

where q is the eccentricity function index.

The final form for the potential in terms of the Keplerian elements is given in clbssical form

by Kaula [31J:
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N R' n n 0

igj = S' IY_., Fn,rn,p (i) • Gn,p.q (e) Sn.m.p.q (.0,MS,0)
a I'a'r

n=2 m=Op=O q=-

(2.26)

where

Sn.m.p,q = Cn,m cos [ (n - 2p)w + (n - 2p + q)M + m(K - 0)]
+ Snm sin [(n - 2p)t + (n - 2p + q)M + m(L2 - 0)] (2.27)

for (n - m) even, and

Sn,mp,q = -Sn.m cos [ (n - 2p)w + (n - 2p + q)M + m(KI - 0)]
+ Cn.m sin [(n - 2p)o• + (n - 2p + q)M + m(Q - 0)] (2.28)

for (n - m) odd.

When using the Keplerian form of the gravitational potential in the Variation of Parameters

equations of motion, singularity problems arise for small eccentricities and small and near-

180 degree inclinations. These singularity conditions cause rapid oscillation in either the

longitude of the ascending node or the argument of perigee [5]. For this reason, efforts

were directed to develop a non-singular formulation for the gravitational potential. One

such singularity-free formulation, which is expressed in terms of equinoctial elements, can

be found in the work of Cefola [7]. Cefola's derivation starts with an expression for the

disturbing potential in terms of radial distance, latitude, and longitude relative to an earth-

fixed frame (i.e., geocentric equatorial). This disturbing function is derived by taking the

negative of the potential function given by (2.22) and removing the two body contribution

g~r:
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U = Hr-r P, (sin 0d) (Cn~m cos mX + Snm sin m),) (2.29)
=2 m=0r

which can be re-expressed in complex form for a particular degree and order pair through

the use of Euler identities:

U = i-T (-)r Cn nm (sin 0) expor"L. (2.30)

in which Cn*, is defined in the following manner:

Cnjn = Cn-j Sn~m (2.31)

such that

Un,m = Real Un}n (2.32)

where aforementioned definitions apply and j is the imaginary unit variable. If the

longitude is expressed as the difference between the inertial right ascension and the

Greenwich Hour Angle:

X = (X-0 (2.33)

equation (2.30) can be re-written in the following manner:

Unm = • (I.)n Cn, exp-imo Pn, (sin 0) expJma (2.34)
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Next, it is desirable to perform a rotational transformation of the spherical harmonics

present in equations (2.29) through (2.34) to the equinoctial orbital frame (Courant and

Hilbert [17] provide the details of this rotation). The first step of this transformation re-

expresses the spherical harmonics in terms of a Fourier sum of functions of the equinoctial

ciements p and q and the true longitude (L):

Pnan (sin 0) expJma = (n-r) Pn( n (2.35)

r- =-n (n-m)!

in which Pn,r(O) is an associated Legendre function of argument zero [391:

PnAr) = (_l)( nr)/2 (n+r)! (2.36)

and for m 2! 0:

--p~) (I + p2 ÷ 2)r (P -_jq) f-p ,-r ,
2n + (q n r (2.37)

r < -m

-m
s~rk(p,q) = (n+m)! (n-m). (1 +p2 +q 2)- (p jm-r p(nM-r. r+mj

(n+r)! (n-r)!

-m _< r< +m

(2.38)

S(mj)(p,q) - (_l)-(1 + p2 +q2)r (p + jq)r-m p ,r-m.r+mrk•

(2.39)
r_>m

where p' b are the well known Jacobi polynomials [39]

ab( = n! F(a+n+l) 2(n F(a+b+n+m+l) (y--)m (2.40)
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of argument y

1-p 2 _q2 = Cos i (2.41)
1+p2 +q 2

If (2.35) is substituted into (2.34), the following expression results:

_ 9 (ReY' *~ expim n n-s)! p ý(0) S(2n*(p,q) expisL (2)
I•[R• -r C,, -( 2.2

S-n (n-rn)!

which can be re-arranged to produce:

* Re n *n ex-Jm6- n gn ps
Un.m - Vn,s S2n e Ytm S\')(p,q) 'l+1 expJsL (2.43)

if the following definition is made:

m (n-s)!t
VP, = (n's's'! Pns(0) (2.44)

This definition allows the analogous relationship between Kaula's inclination function and

the "S" function to be presented [661:

Fnmp(i) = v(m S 0 - , tan(")) (2.45)

for (n-m) even, and

Fmp(i) = JVT  (m,n-2p) 0, tan (2.46)

for (n-m) odd.
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Next, the product (a)n expisL can be re-expressed in terms of a Fourier series of functions

of the equinoctial elements h, k, and the mean longitude (k):

(a)n expisL= yn's expJ't (2.47)

This relationship between (2.43) and (2.47) may not be evident without explanation; the

key lies in the indices. With the correct implementation of indices

(a)n"+l = (y)n , if n =-n'-1 (2.48)

It should also be noted that (2.47) contains both L and X, which are defined in the

following manner:

M = +0+9 (2.49)

L = f+ow+ (2.50)

which can be inserted into (2.47):

(R) ex-s - yt's exp (t- s)(w+Q)] expJm (2.51)

Cefola points out that the left hand side of (2.51) is the generating function for the Hansen

Coefficients:

(r)nexpJsC= Xt's expjLM (2.52)
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Therefore

Z Xn'sexpJt - Yn'SexP[ (t-s)(O)+L)]expJtM (2.53)
S= .... 0 t =..o

or, equivalently:

s = Ytexp(t-s)((0+)lA (2.54)

which provides an expression for y•,5 in terms of the Hansen coefficients, Xt's:

t= Xt's expJ(s-t)((0+ )I (2.55)

where the Hansen coefficients are functions of rational numbers and the orbital eccentricity

(e2 = h2 + k2). The Newcomb-Poincare power series representation for the Hansen

coefficients takes the following form:

= ,,i XPas+b "e2  (2.56)
i=O

This expression can be factored into a form which offers much better convergence for high

eccentricity cases with no penalty for low eccentricity cases [48]:

Xt~s= 1- 2)n+3/'2 jt--sl =o Yiaib 2i
t-= (I-e Y, 1 e (2.57)

i=O
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where

I t-s + (t-s)
2

(2.58)

b It-s - (t-s)
2

Substituting either (2.56) or (2.57) into (2.55) provides the solution for the Y. terms,

which are referred to as modified Hansen coefficients in terms of equinoctial variables.

The Xn+Aai.b and Yi+ib terms are coefficients which result from the Newcomb operator

(for simplicity, these terms will hereafter be referred to as Newcomb operators).

Recursions for these Newcomb operators can be found in the work of McClain and Proulx

[39,48]. It is interesting to note is that the Hansen coefficients are Kaula's eccentricity

functions described previously in the Keplerian expression of the gravitational potential.

Substituting (2.47) into (2.43) provides an expression for the gravitational potential in

terms of the equinoctial elements for a particular degree and order pair:

* (Re)n-. n m0 q)
Un = " -- Cnin Vs Sns(p,q) Ynl's(k,h)expJ("'-m) (2.59)

S---n t= .-.oo

2.1.2 Zonal Harmonics (order m = 0)

If the order (m) is set equal to zero in equation (2.22), the following expression results:

•t=-•-[1+ (e -C-n,O Pn,o (sin¢)

r n = 2 r (2.60)
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which, since Jn,o = Jn = -Cn~o = -Cn, leads to:

' =- x1- (-rJnPn(sin¢)]
r n=2 (2.61)

Similarly, if the order (m) is set equal to zero in equations (2.26), (2.27), and (2.28), an

expression for the zonal potential in terms of Keplerian elements results:

N (& n
= M. ~ I Fn,0p (i) Gn.p.q (e) SnO,p.q (0),M,(2,6)

n=2 pO= q (2.62)

where

Sn,o,p.q = Cn.0 cos [ (n - 2 p)co + (n - 2p + q)M ] (2.63)

for n even, and

Sn.O.p,q = Cn,0 sin [ (n - 2 p)0o + (n - 2p + q)M] (2.64)

for n odd (the coefficients SnO are, by definition, zero). It should be noted that the effects

of the zonal harmonics can ably be described in terms of any of the three forms of the

potential: spherical harmonic form, Keplerian element form, or equinoctial element form.

In this discussion, they will be described in terms of this simplified Keplerian formulation

of the gravitational potential.
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The zonal harmonic coefficients of the geopotential, Jn, can be found in numerous

references. Table 2.3 [351 lists values for normalized GEMT3 harmonic coefficients in

units of 10-6:

Table 2.3 Normalized GEMT3 Zonal Harmonic Coefficient Values

(n,m) Value (n,m) Value (n,m) Value

(2,0) -484.164885 (3,0) 0.9570928 (4,0) 0.5388446

(5,0) 0.0685727 (6,0) -0.1483014 (7,0) 0.0903888

(8,0) 0.0467358 (9,0) 0.0281079 (10,0) 0.0560775

(11,0) -0.0513932 (12,0) 0.0332468 (13,0) 0.0423347

(14,0) -0.0208865 (15,0) 0.0015621 (16,0) -0.0077271

(17,0) 0.0201231 (18,0) 0.0095858 (19,0) -0.0042338

(20,0) 0.0171279 (21,0) 0.0085040 (22,0) -0.0075970

(23,0) -0.0243201 (24,0) -0.0016892 (25,0) 0.0065304

(26,0) 0.0020972 (27,0) 0.0012812 (28,0) -0.0063334

(29,0) -0.0026965 (30,0) -0.0011753 (31,0) 0.0055504

(32,0) -0.0010348 (33,0) 0.0015261 (34,0) -0.0053579

(35,0) 0.0047667 (36,0) -0.0033053 (37,0) 0.0004951

(38,0) 0.0014386 (39,0) -0.0020201 (40,0) 0.0012413

(41,0) 0.0000954 (42,0) 0.0004031 (43,0) 0.0012005

(44,0) -0.0001962 (45,0) 0.0012613 (46,0) -0.0004856

(47,0) 0.0000966 (48,0) 0.0000508 (49,0) -0.0003145

(50,0) 0.0004076
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These coefficients are related to equipotential surfaces; any position along one of these

surfaces possesses an equal value for the potential even though the positions may be at

differing distances from the origin of the reference frame--refer to Figure 2.1 [431).
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Figure 2.1 Zonal Harmonics / Equipotential Surfaces

where the surfaces shown in this figure are for positive values of the Jn coefficients.

As is evident in equation (2.61), zonal harmonics are dependent solely upon a satellite's

latitude and radial distance. The zonal harmonics describe how the actual shape of the earth

deviates from the symmetrical Kepler earth in terms of latitude. For example, the density

of the earth at one particular line of latitude may be different (either higher or lower) than at

another line of latitude. Figure 2.2 depicts this relationship [43]:
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Figure 2.2 Zonal Harmonics

where the alternating dark and light "bands" represent lines of latitude which have densities

lower and higher than the two-body earth's density. These zonal harmonics represent the

dominant perturbation on a near-earth satellite. The physical effects which arise due to the

zonal harmonics are nicely summarized by Blitzer 131:

1. Secular perturbations in the longitude of ascending node, the argument of perigee, and

the mean anomaly are inductd by even zonal harmonics. These secular variations are the

principal long-term effects of the non-spherical earth perturbation. The bulge at the equator

produces a torque which tends to turn the satellite's orbit plane towards the equator; the

satellite for the aspherical earth will cross the equatnr short of the crossing point for the

unperturbed, two-body satellite. This phenomena, which is referred to as the regression of

the node, is depicted in Figure 2.3 [31 (for direct orbits; an advancement of the node occurs

for retrograde orbits).
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Unperturbed Orbit (3 - 0)
Perturbed Orbit (Oblate Earth)

Equator

Figure 2.3 Nodal Regression

The non-spherical earth perturbation also causes the apsidal line to precess. This effect is

exhibited in Figure 2.4 [3].

Figure 2.4 Apsidal Line Precession

54



By letting (n - 2p) = (n - 2p + q) = 0 in equations (2.62) through (2.64), the secular effects

can be viewed in a mathematical sense:

SN

I {a-• r) Fn,o,n/2 (i) Gn,/ 2,0 (e) Sn,o,n/2,0 ((O,M,K2,O)an =2 a(2.65)

with

Sn.On/2,0 = Cn.0  (2.66)

for n even, and

Sn,0-n/2,0 = 0 (2.67)

for n odd.

Hence, only even zonal harmonics give rise to secular effects (odd n-m would reduce this

equation to zero).

2. The zonal harmonics also contribute periodic (both long and short periodic) effects to

the motion. Equations (2.62) through (2.64) can again be used to determine the periodic

effects of the zonal harmonics. Short-period effects are caused by the terms containing M

(the fast variable), while the long-period variations are induced by the term containing wo

(slow variable). In order to remove short-period variations, the coefficient of the fast

variable (n - 2p + q) in (2.63) and (2.64) must be set equal to zero (to meet this condition,
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q = 2p - n). Similarly, to remove long-period effects, the coefficient for (o would have to

be set to zero (n = 2 p).

The long-period ar.d secular effects caused by zonal terms of high degree are not

insignificant. Cefola [12] points out that neglecting the long periodic and secular terms

with degree greater than 5 (actually, J6 through J 18) may cause position errors on the order

of 500 or 1000 meters after just 10 revolutions of a 16 rev/day satellite. It is not sensible to

utilize a gravitational model with errors of this order if sensor data is more accurate.

3. The magnitude of the secular and periodic variations decreases as altitude (semi-major

axis) increases, while the magnitude of the effect increases with increasing eccentricity.

4. The dominance of the J2 term in the secular rate equation ensures that the node always

regresses (again, for direct orbits):

Usec"- 3ncosi - [(12-80 1)-(4+ 15I)e2]+
2 (p2 16 p4 (2.68)

where I= sin2 i and p= a (I -e 2).
ReR

In contrast, the motion of perigee is dependent on the term (4 - 5 sin 2 i) in the secular rate

equation:

= 3 n J2 (4 5 sin 2 i) + .4 p2  (2.69)
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If the inclination is equal to 63.43 degrees (a value referred to as the critical inclination--for

retrograde orbits, the critical inclination is equal to 116.57), perigee exhibits no secular

variation. If the inclination is less than the value for the critical inclination, the apsidal line

will advance; if the inclination is greater than the critical inclination, the apsidal line will

regress. Deprit et al. have done much work with critical inclination type orbits [ 14].

Blitzer [3] also gives the equation for the secular element rate for the mean anomaly due to

the non-spherical earth perturbation. It is important to note that element rate equations can

be derived by inserting into the VOP equations the disturbing function for the non-spherical

earth perturbation, which is defined as the negative of the geopotential. For simplicity,

only the final results have been included.

5. For polar orbits (inclination equal to 90 degrees), the node exhibits no secular variation-

-refer to equation (2.68); the cosine of 90 degrees is zero.

6. The term (4 - 5 sin2 i) exists in the denominator of the periodic element rate equations

for the e, i, Q, and (o (Blitzer [31 presents the element rate equations for periodic variations

due to the non-spherical earth perturbation). For this reason, special techniques must be

used for values of inclination near the critical inclination to avoid small divisor problems.

2.1.3 Tesseral Harmonics (order m # 0)

The physical effects which arise from the tesseral harmonics can be determined by an

analysis of equation (2.59). Similar to the zonal harmonics, both short-period and long-

period effects are present. These effects are best described through analysis of tesseral m-
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daily, tesseral resonance, and tesseral linear combination terms. These terms must not be

neglected since they serve to introduce errors on the order of the neglected zonals described

above.

The key to understanding the effects of tesseral harmonic terms lies in the interaction

between a satellite's orbit and the mass distribution of the earth. It is of interest to note that

the mass distribution of the earth is not static; the rotation of the earth causes this mass

distribution to rotate. Therefore, when studying the effects of harmonic terms, it is

important to understand the relationship prescribed by a satellite's orbit about the rotating

mass distribution of the earth. An understanding of this relationship can be mathematically

viewed with the aid of the following expression:

(D= tX-m0 (2.70)

which is the time derivative of the phase angle in (2.59).

The conditions for tesseral resonance can now be given:

m•0

(2.71)

tX-mO - 0

Shallow resonance occurs if the magnitude of (2.71) is small; if this quantity is very close

to zero, deep resonance results. The tolerances which distinguish between deep and

shallow resonance are determined by the implementors of the differing theories.
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As an example, consider a typical low altitude satellite completing approximately 14

revolutions in one day (a quantity known as the satellite's mean motion), which can be

stated mathematically in the following manner:

=14 o), + £ (2.72)

since X resulted from a combination of Q, a), and M. Inserting (2.72) into (2.71) and re-

arranging leads to the resonant condition:

(14t-m)we+tE 0 (2.73)

where 0 is approximately the rotation rate of the earth, woe. For combinations like (t = 1,

m = 14) and (t = 2, m = 28), deep resonance occurs. Combinations like (t = 1, m = 15)

produce the shallow resonance effects described previously. In other words, resonance

occurs when the satellite mean motion is some multiple of the earth's rotation rate, causing

the satellite to periodically encounter the same set of gravitational forces--a condition which

results when repeat ground track orbits are used. Tesseral resonance contributes long-

periodic effects to a satellite's motion.

Tesseral linear combination terms which satisfy the following conditions:

m•0

(2.74)

tX-m0 >> 0

contribute high frequency, short-periodic effects to a satellite's motion.
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Viewed in a slightly different manner, linear combination terms arise from combinations of

the variables X and 0. Tesseral resonance can be seen as a special linear combination term

which meets the criteria defined in (2.71). The remaining linear combination terms (i.e.,

excluding the tesseral resonance terms) satisfy the conditions given in (2.74). In this

fashion, tesseral resonance terms provide the long-periodic contribution of the linear

combination terms; the remainder of the linear combination terms provide the short-periodic

contribution.

Tesseral m-dailies, which provide additional short-period variations, result when the

following conditions are met:

m•0

(2.75)

t=0

These variations, which result from the presence of the m 0 or m 0 term, repeat m times

per day. At a given latitude, the tesseral m-dailies account for variations in a satellite's

motion due to changes in the earth's gravitational attraction caused by the motion of

longitudinal irregularities in the earth's mass distribution resulting from the earth's rotation.

The sectorial harmonics, which can be considered a subset of the tesseral harmonics,

superimpose bands of mass density upon the spherical earth of the two-body problem

(similar to the sections of an orange. Refer to Figure 2.5 [43]):
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Figure 2.5 Sectorial Harmonics

In this manner, the sectorial harmonics represent the longitude dependent terms of the

geopotential. The tesseral harmonics represent the "latitude and longitude dependent"

deviations from a regular distribution of mass (much like that of a checker board--refer to

Figure 2.6 [43]):

Figure 2.6 Tesseral Harmonics
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where the alternating dark and light bands represent belts of mass density which increase or

decrease the local density. It should not be inferred that the tesseral harmonics are a direct

superposition of the zonal and sectorial harmonics. The bands or belts of mass density

which the zonal and sectorial harmonics superimpose upon the spherical, uniformly dense

earth are concentric along a line of latitude or longitude, respectively (in other words, these

bands form spherical cross-sections). The tesseral harmonics, on the other hand, do not

necessarily form spherical cross-sections along a particular line of latitude or longitude.

Rather, each "square" in the checker-board configuration can be at differing "heights" or

"depths."

2.2 Perturbation Techniques

Perturbation techniques are techniques which account for the various perturbative effects in

the determination of a satellite's motion. Since this thesis focused on the effect of the non-

spherical earth perturbation, an understanding of perturbation techniques was vital.

Classically, two main perturbation techniques have been recognized: special and general

perturbation techniques. More recently, semianalytic theories, which combine the

advantages of the two classical techniques, have been recognized. Section 2.2 will re-

emphasize some of the points expressed in Chapter 1 concerning these three perturbative

techniques.

One class of perturbation techniques is special perturbations. Bate, Mueller, and White

define special perturbations as techniques which deal with the direct numerical integration

of the equations of motion including all necessary perturbing accelerations [2]. These

techniques offer both advantages and disadvantages to other perturbation tecihniques, some

of which can be attributed to the numerical integration method implemented. The selection
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of an appropriate integration method is vital to optimize the trade-off between result

precision and computation time. Numerical integration can provide precise results at the

expense of computational time through the use of small step sizes (adequate modeling of

high frequency perturbations requires small steps sizes to obtain desired precision). These

small step sizes, however, contribute greatly to computer round-off and truncation errors,

which can eventually build up and corrupt results. It should be noted that the advent of

computers has made the use of special perturbation techniques more convenient for modem

applications. Sections 2.2.1 and 2.2.2 of this thesis will describe Cowell's Method and the

VOP Method, respectively. These two methods are the special perturbative techniques

analyzed in this thesis.

In contrast to special perturbation techniques, general perturbation techniques provide

analytical formulae which are used to predict a satellite's motion, usually with the aid of

series approximations to model the effect of various perturbations. These techniques are

advantageous in that the formulae can be applied to a variety of individual cases; special

perturbation techniques are specific to one set of initial conditions; they take a set of given

initial conditions and numerically integrate through multiple time steps to arrive at a desired

solution. If new initial conditions are prescribed, each of the time steps in the numerical

integration process must be re-accomplished to arrive at the desired solution. General

perturbation techniques, however, use a system of analytic equations to compute a desired

solution directly from any given set of initial conditions; no multiple time steps are needed

to transform the initial conditions to desired solutions. In other words, general perturbation

techniques provide a savings in computational time as compared to special perturbation

techniques. However, these increased efficiencies are gained at the expense of accuracy;

the assumptions that go into developing the theory reduce the accuracy of the results.

Furthermore, the development of the actual theory itself has classically been time-

consuming, negating some of the benefits of the increased efficiency described above. It
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should be mentioned that modem symbolic manipulators, such as Mathematica [641, can

potentially reduce the development time of these theories by significant amounts. As one

final note, increased accuracy could be obtained if the integrations required in the

expansions could be exactly determined. Since these integrations are often difficult or

tedious to determine exactly, simplifying assumptions are made and, in turn, reduce

accuracy.

Semianalytic methods, which combine the advantageous aspects of both special and genera!

perturbative methods, comprise a third class of perturbation techniques. These techniques

provide accurate results in a manner that is computationally efficient. The basic philosophy

for one such semianalytic orbit determination system, the mean element theory (the theory

used in Draper Laboratory's R&D version of GTDS), can be summarized rather simply.

First, osculating element equations of motion are established; this is usually accomplished

by modeling conservative perturbations through Lagrange's VOP equations and non-

conservative perturbations through Gauss's VOP equations. Then, these osculating

element equations of motion, which contain secular, long-period, and short-period

variations to a satellite's motion, are converted to mean element equations of motion.

These mean element equations of motion are comprised of only the secular and long-period

contributions to the motion. This removal or "stripping" of the short-period terms, which

is accomplished by applying the method of averaging to the equations of motion, is

significant because the high frequency nature of the short-period terms drive step size

requirements for numeric techniques; in order to preserve accuracy in ephemerides, small

step sizes must be used to model the high frequency, short-period terms. However, if the

short-period variations are removed, the remaining mean element equations of motion can

be propagated with numerical integration techniques using much larger step sizes than if

osculating element equations of motion were used. These larger step sizes, which are

usually on the order of one day, have sizes which are driven by the nature of the frequency
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contained in the long-period terms. The short period contribution to the motion can then be

independently constructed using analytic or numeric methods. At a desired output time, the

short period contributions are added into the long-period and secular contributions

contained in the mean elements to yield an approximation to the osculating elements. This

method proves to be both accurate and computationally efficient.

In addition, writing the osculating equations of motion in terms of mean elements does not

imply that short period variations have been removed. For example, osculating equations

of motion written in terms of mean elements still contain short period variations; short

period variations are caused by the fast variable--even if it is a mean fast variable. The

averaged equations of motion (which give the mean element rates), however, do imply that

short period variations have been removed; the fast variable dependence has been removed

from these equations which, in turn, removes the short-period variations.

Section 2.2.3 of this thesis will address the generalized method of averaging and specific

Semianalytic Satellite Theory (SST) mathematical techniques.

2.2.1 Cowell Mathematical Techniques

Cowells method is an excellent example of a special perturbation technique that readily

flows from the two-body equation:

e+ !ý÷ r=O
r3  (2.76)

If the acceleration caused by a desired perturbation was known (ap), this two-body

equation could be modified to give:
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P• + L- r = ap
(2.77)

Rearranging this equation produces a more desirable form

P= ap - 9-r
r3 (2.78)

since

J =(2.79)

and

r = fv dt = Jidt
J (2.80)

In other words, the velocity and position of a body can be determined as a function of time

by integration of equation (2.78) if the body's initial position and velocity, gravitational

parameter, and perturbative acceleration at the desired time are known. For computer

systems, this integration is performed via some type of numerical method [26].

This brief explanation of Cowell's method has been developed in vector form. However,

in real-world applications, the position and velocity of the body (often times referred to as

the state of the body) are broken down into corresponding unit directions (x, y, and z) in

terms of body-fixed coordinates. These unit directions lead to a scalar derivation, where:

r = Nfx2 + y2 + z 2  (2.81)
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Therefore, equation (2.78) can be rewritten for each of the directions:

r a = a r-
r3

i',0 ap - (2.82)

r = ap - 9z

Then, with expressions for ap in each of the directions, the new state can readily be

determined through integration. These expressions for the non-spherical earth perturbation

are given in the GTDS Math Specification [26]:

(= Y1 Xb ( Yb
ar r2 ,/Xb 2 + yb2  Xb 2 + yb2

r r 2 VX + Yb2 (D1 Xb 2+(2.83)

a IIV l. - XAb2 + Yb 2 a'apz r D-r Zb r2 ao

where xb, Yb, and zb are the inertial coordinates of the spacecraft in the body-fixed

coordinate system, r is the magnitude of the vector from the body's center of mass to the

satellite, and iV is the disturbing function for the non-spherical earth:

r [L=2  0  Pr)nm (sIn O (Cn.m cos mX + Snm sinmk) (2.84)
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The partial derivatives in (2.83) are as follows [261:

S_ it ()(n + 1) 1 Pn.m (sin 0) (Cnm cos mX + Sn,m sin mX)ar r2 n 2 r/ M=0

r T It(Cn.m cos mX + Sn sin mX)
r[2 m=0 (2.85)

x [Pnm+l(sin )) - (m tan )) Pn,.(sin 4)]

r= r O Pnm (sin 0) m (Sn,m COSsin m)

2.2.2 Variation of Parameters (VOP)

As described in the preceding section, Cowell's method models a spacecraft's motion as a

variation in the position and velocity of the spacecraft. Perturbation techniques prior to

Cowell's method dealt with variations in the orbital elements or any other consistent set of

parameters which describe an orbit [21--thus the name, Variation of Parameters. The goal

of this derivation will be to provide explicit expressions for parameter rates of change of the

form:

dc__A =dt Z (cj, t) for j = 1,2,...,6 (2.86)

where Z is an expression involving the parameters and time (Z has been described as an

expression involving the parameters and time rather than a function of parameters and zime

in foresight of matrix expressions in the solution). It is important to note that the
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parameters cj for this solution are time-dependent quantities--as opposed to the "constant"

(time-independent) parameters found in the two-body solution.

The VOP derivation which follows is modeled after that of Brouwer and Clemence [4],

with much insight provided by McClain [40]. As with most astrodynamic derivations, the

starting point is the two-body equation of motion:

f + Er=O
r0 (2.87)

In the two-body solution (a solution in which six constants of integration arise), functions

for position and velocity of the following form result:

x = fl (cl, c2, .... c6, t)

Y = f 2 (C1 , C2 , ... , C6 , t)

z = f3 (C1 , C2 , C6 , t)

(2.88)

S= g1 (Cl, C2 , ... C c6, t)

= g2 (cl, c2 ... c2 , t)

S= g3 (C1, c2, ... C c6, 0

where cl , c2 ,..., c6 represent the chosen set of parameters; t is time; and

ofk,
gk=-, for k=1,2,3

at (2.89)
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since the chosen set of parameters are considered to be constant in the two body solution.

With the introduction of perturbations, the equations of motion for the two-body problem

take a form analogous to (2.82):

I-txR + gX=Px
r3

x+ y =p

r3  (2.90)

I.z
+- = Pzr3

where Px,y,z represent the perturbing accelerations (for the corresponding unit directions)

due to either conservative or non-conservative perturbing forces. These perturbing

accelerations are a function of the corresponding components of position and velocity, as

well as time: Px,y,z (rx,y,z , rx,y,z t).

In this perturbed solution, the set of parameters can no longer be considered a constant;

they vary slightly with time, which leads to the chain rule of differentiation in order to

determine velocity:

Sdx ___ =Lf + 1: Lf, dcj for j = 1,2,...., 6

dt at acj dt (2.91)

with the assumption that the two-body expressions for position remain applicable for this

perturbed case and that the equations for velocity in the other directions (Y and Z

directions) are of the same form as (2.91 ).
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What results for the perturbed case is a set of six first order equations (the first three

equations take the form of (2.88) for position and three equations of form (2.91)

representing all directions for velocity) in six unknowns (the set of parameters). In order to

determine a unique solution for this system of equations, six "initial conditions" or

constraints on the chosen parameters or orbital elements (which, in turn, also represent

constraints on the position and velocity) must be specified. The expressions offered in

(2.92), which represent a common set of constraints placed on the velocity, are three of the

six required constraints which aid in the transformation of the perturbed solution to the

desired parameter rate expression of form (2.86):

Z afI dcj =0

acj dt

Z af 2 dcj =0

Dcj dt (2.92)

y dcX = 0

acj dt

for j = 1,2, ..., 6

For perturbed motion, these three conditions constrain the velocity to explicitly equal the

time derivative of position, as in the two-body case (which allows the perturbed case to

maintain the appearance of the two-body case). However, it should not be inferred that the

perturbed elements are a constant (as the elements in the two-body case are); the constraints
dcj

listed in (2.92) do not imply that -cj is zero for the perturbed case. Rather, the summationdct

Xi dcj isCr wihman i c
- - -z , ci and -C could both be zero, both be non-zero, or eitheracj dt szeo dt

one of the two zero while the other non-zero. As a result, McClain 1401 states that at any
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time t, the perturbed elements always correspond to a set of unperturbed elements, which

are referred to as osculating elements. The constraints allow both the position and velocity

to be related to the perturbed elements through the formulas for elliptic (two-body) motion.

Due to these constraints, the derivation resumes with equations of the form (2.89):

dx = g (Cl, C2 , ... , C6, t)
dt at

dy Df2
Y -= = g2 (CI, C2, .... c6, t)dt t (2.93)

= dtz = g3 (c], C2, C6, t)dt at

By differentiating these equations once more, the following expressions result:

. a 2f, a2 f dcj aJg, agg dcjx= -+ I - or - +Z I
at 2  acj at dt at acj dt

a 2f2 a2f2 dcj a92 ag2 dcjy= -+ I- or -- + I
at 2  acj at dt at acj dt (2.94)

a 2 f3 D 2 f3 dcj ag 3  ag 3 dcj
z=-+ _1 - - or -- + I

at2  acj at dt at acj dt

for j = 1,2, .... 6

which can b,- substituted into (2.90):
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af pf if __ I

a l+ !f-+ Y, =~' c Px (r,/', t)
at2  r3  acj at dt

a2f2 , f2  a 2f 2 dCJ (,

at2  r3  acj at dt (2.95)

a2f6 + gf3 + Z a2f3 dcj =Pz (r, f, t)

at2  r 3  ac j at dt

for j = 1,2, ..., 6

If the two body motion is expressed in a similar fashion, the final three constraints on the

parameters can be identified as:

afk - =0, k=1,2,3

at 2  r3  (2.96)

When subtracted out of equations (2.95), a simplified set of expressions can be obtained.

a2f dcj a a Lcj Px (r, f, t)

acjat dt acj dt

a ýf 2 dcJ - 2 dcLJ= p (r, f, t)

acj at dt acj dt (2.97)

a2f 3 dcj = "-g 3 dcj Pz (r, f, t)

acj at dt acj dt

for j = 1,2 ... , 6
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The entire system of six constraints expressed in terms of x, y, z, x, y, and z rather than fk

and gk provides the desired relationship--six equations involving the six parameter rates of

change.

axdc x de x dc3 _ x dc4 + ix dc5 + ax dc 6 0

acI dt ac2 dt + c3 dt + c4 dt ac 5 dt ac6 dt

aYdc1  Y d_ j Y dc3 _ Y dc4 + ýY dc5 + Y dc6+_Y d ++- +_ + + u =y 0

&cI dt i)c2 dt IDc3 dt ac4 dt ac5 dt ac6 dt

__ __ z dc2 _az dc3 zd zd 5  dzdc6

acI dt ac2 dt ac3 dt ac4 dt c dt c6 dt

(2.98)

.~-f.' + x dc2  /)X dc3  /)x dc4 _ )x dc5 /) dc6  P,(rit
a i) dcd + "+ dc 3 + Y + dc+ _ P. (r,d', t)
ac, dt ac2 dt ac3 dt ac4 dt Dc5 dt ac6 dt

d aydc 2 + 2 4dc3 _ Zdc4  y dc 5  /zdc 6
+) L~ +_ +_ _L_ 4-+ + y4- Py (r,i-, t)

aCl dt ac 2 dt ac3 dt aC4  dt +c5 dt ac6 dt

Diz dc, D C2 +_ a _ C3 + ai -c• +=id5+a P, (r,/f, t)
a)Cl dt a)c2 dt ac3 dt a)ca dt Dc5 dt a)c6 dt

The system of equations offered by (2.98) represent six equations with imbedded

expressions for parameter rates of change--the crux of the variation of parameter derivation.

It would be tedious to solve this system of six equations for the six element rate

expressions; a more convenient set of expressions would be useful in astrodynamic

applications. Indeed, Lagrange has developed a set for conservative forces, while Gauss

has developed a set for both conservative and non-conservative forces.
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2.2.2.1 Lagrange's VOP Equations

Lagrange VOP equations (also known as Lagrange's Planetary Equations) deal with

conservative forces, or forces that produce no net work upon an object through a round-trip

or closed path. In astrodynamics, third body and central body (i.e., non-spherical earth)

perturbations are examples of conservative perturbations which could be solved using

Lagrange's VOP formulation. For his formulation, Lagrange modeled the perturbing

accelerations Px~y.z (rxy. z, r t) through partial derivatives of a conservative disturbing

function, R, which can be mathematically expressed in the following manner:

Px = aR Py = aR Pz =

ax ay az (2.99)

Lagrange documented that equations of the form (2.98) can be greatly simplified--six new

equations can be derived from the set offered in (2.98) through the use of:

1) matrix notation

2) Lagrange brackets

3) perturbing accelerations of form (2.99)

-a y-z +a +y +
4) successive multiplications by -. . .- and -, (j = 1, 2, ..., 6)

and

5) addition
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Note that the right hand sides for the final three equations of (2.98) become

S, 
and R w ith the perturbing acceleration assum ption of (2.99) above).

Separating the parameter rate expressions d from the Lagrange bracket expressions [cj , ck]
dt

in this set, the following matrix system results:

[cj ,Ck]J a DR
dt dc (2.100)

where LLCJ, ckj] represents a coefficient matrix of Lagrange brackets, dc a vector of

DR
parameter rate expressions, and a a vector of partials of the disturbing function with

respect to the elements. In order to determine the vector of parameter rate expressions

directly, the inverse of the Lagrange bracket matrix is needed. According to proof by de

Lafontaine [20], the negative inverse of the Lagrange bracket matrix is the Poisson matrix,

P, which leads to the following expressions:

dc = [cj Ck]-ID
dt ' dc (2.101)

and

c _p R
dt dc (2.102)

76



as long as conditions for invertability exist for the Lagrange bracket matrix (i.e., a non-zero

determinant, etc...). Since this Poisson matrix is skew-symmetric, another form can be

given:
_c__= pT D.R_

dt dc (2.103)

The Poisson brackets of equinoctial elements are given by Cefola [8]:

(a, Xo) - -as I

(p', h) = -h S4

(Xeo, k) = -k S4

(P, P) = -p s5

(X,, q) = -q S5

(h, k) = -sI S3  (2.104)

(h, p) = -kp s5

(h,ij = -kq s5

(k, p) = hp s 5

(k, q) hq s5

(p,q) = ls 3 s 5 1
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where

1 2
na

s2  ++p2 +q 2

S3 = /1-h2-k2 (2.105)

Sl 1-h-

S4  
"" S3

I + S3

with the retrograde factor, I.

2.2.2.2 Gauss' VOP Eguations

Gauss' VOP equations, which are used for perturbations which can not be expressed by

some disturbing function R, are equally acceptable for non-conservative and conservative

forces. Gauss' derivation flows nicely from the equations offered in (2.92) and (2.97),

which will be restated as (2.106):
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Sdf1 =dc

a dt c

".f2 dcj 
_y

dCj t•j

Lf3 dcj _; z dj 0

ocj dt ocj

(2.106)

g dcj _ = I N ýj =P.(r, ft)

acj dt acj

5"•g-2 dcj I L y• dj =Py (r, f, t)

Dgcj dt ,cj

1 °9 3 dcj Z = i dj P, (r, f, t)

acj dt acj

for j = 1,2, ..., 6

In order to simplify the expressions which follow, the components of position (x, y, and z)

and the components of velocity (x, y, and z) will be replaced by ri and vi., where i = 1, 2,

and 3. This notation reduces the set of equations listed in (2.106) to the following two

double summations:

I - 6C = 0

(2.107)
3 6 a3Sv--! dj P i P (r,i-, t)

i=JJ= I Jcj i=1
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Multiplying both sides of the first three equations of (2.107) by -c the last three by -k

and summing the results, the following equation results:

3 •6 CkaVi aCk L1,-3 Ck pi(

+ -- I c= I r f
avi JCj ari vcj i -- I avi (2.108)

for k = 1,2, ... , 6

Noting that the elements are mutually independent leads to the Kronecker delta function:

3 aCk aVi +aCk ari)

i- =Iaiaj r c (2.109)

for j,k = 1,2, ..., 6

which reduces equation (2.108) to the following form:

6 3 Ck

I 8 j,k dj = ! - Pi (r,f,t)j = I i-a=iVi (2.110)

But since the Kronecker delta function is unity for j = k (otherwise zero), the final form is

readily obtained:

cj = I - pi(r, r,t) (2.111)
1= av,
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Jablonski presents a summary of the equations [30] in terms of the singularity free

equinoctial elements a, h, k, p, q, and X:

d!a = 2_v ad
dt n2a

dt

dk •- IrY :, (2 x, ' - k ]1  - h .(q1•-•p ×P •]) ad

dt G

(2.112)
dp =[1+ p2I+q2 Y1 ad
dt 2G V]jad

dq =[I(I+p 2 +q 2)xi 'Vad
Tt2G wa

dt- = na--• +P k hv) + -L(qIYl-pXl)Wn ad

where ad is the perturbing acceleration acting on the satellite, I is the retrograde factor, r

and v are the position and velocity of the satellite, n is the mean motion, and

X, , Yj, X, and'?, are the position and velocity coordinates of the satellite in the

equinoctial orbital frame. The parameters G and B are defined in the following manner:

G = na 2  1-h 2-k 2  (2.113)

2 2 (2.114)

1 +a-h -k

Atmospheric drag, solar radiation pressure, and thrust are examples of non-conservative

perturbations which require Gauss' VOP formulation.
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2.2.3 Implementation of VOP Formulations with Numerical Methods

It is now convenient to establish steps for the implementation of a VOP formulation as part

of a numerical method. This description, which indicates a very simple process, does not

reflect the more elaborate process used by the Goddard Trajectory Determination System

(GTDS):

1. At some desired time, record/obtain a desired set of orbital elements

or parameters (usually a "given").

2. Compute the desired pertuibing acceleritions.

3. Compute the element rates ef change from the appropriate VOP

formulation.

4. Numerically integrate these rates through the desired time step.

5. Add the result of step (4) to the elements used in step (1).

6. Continue to step through time until the final time is obtained, making

sure to replace the elements of step (1) in successive iterations

with the perturbed set from step (5).

2.3 Semianalytic Methods

As mentioned in Section 2.2, special perturbation techniques provide extremely accurate

results at the expense of computation efficiency. General perturbation techniques, on the

other hand, are much more efficient, but provide less accurate results due to simplifying

assumptions made in the analytic development of these techniques. The current trend in the

design of orbit propagators has been to use semianalytic methods. These methods, which
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provide accurate results in a manner that is computationally efficient, will be analyzed in

this section.

2.3.1 Semianalytic Equations of Motion and the Generalized Method of
Averaging

Since both Langrangian and Gaussian VOP equations can be used to model the

perturbations in semianalytic theory, a generic equation representing either VOP form shall

be the starting point for the semianalytic equations of motion. Again, the derivation

follows that of McClain [38] (an additional reference is the work of Morrison [44]):

dci--T = 8Fi(c,f) , for i = 1,2,..... 5

(2.115)

df = n (ci) + e F6C,f)
dt

where Z is a vector of the five slowly varying elements, e is a small parameter related to the

perturbations, and f is the fast element. For effects of the geopotential, the small parameter

usually takes the form of small coefficients such as harmonic coefficients (J2, J3 , etc...).

These expressions represent osculating equations of motion in terms of osculating elements

(they include secular, long-period, and short-period variations). The goal of the method of

averaging is to separate the short period variations from the long-period and secular

contributions to motion. To accomplish this goal, it is first necessary to express equations

(2.115) in terms of mean elements. These equations will remain osculating equations of

motion, however, since the mean fast variable will still be present in the equations to

contribute short-period variations. Representing these osculating equations of motion in

terms of mean elements is desirable in that it provides a form which can be readily stripped

of its fast variable dependence and the resulting short-period variations. The near identity
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transformation will be used to convert the left hand sides of equations (2.115), while a

Taylor series expansion of the perturbing functions (FI.2.3,4.5,6) about the mean elements

will be used to transform the right hand sides. In this derivation, the terms "rates" and

"equations of motion" will be used interchangeably.

An important concept in semianalytic theory is that of the near identity transform. This

transformation expresses the osculating elements in terms of the mean elements:

- 2ci =ci + E 11i.l + E2 1"i,2 + .. .fori= 1,2,..... 5

(2.116)

f = f + E 716, 1 + E2 116.2 +

where the overbar notation is used to signify mean elements (and to distinguish them from

osculating elements) and Tli.ord, are functions of the mean elements (11 = rl(c,b ) that are 27t

periodic in f. These functions represent the short-period terms. The expressions in

(2.116) can be differentiated with respect to time to produce the following relationships:

dci =dc+ •Ck +e ck +...
dt dt aCk aCk

fori = 1,2, ... 5; k = 1,2 .... 6 (2.117)

f =f + -- 162 Cka+7...

dt dt aCk aCk

where a summation is implied for the terms involving dot products of partial derivatives

with rate vectors.
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It can be assumed that expressions for the mean element equations of motion dta di)

can be expressed as power series in terms of the same small parameter given in (2.116), E.

dci 2
d" = Ai. (c) + Ai.2(c)+- .... fori=1,2,...,5

(2.118)

-f = H (cl) + E A 6.1 (^) + £2 A 6, 2 (C) +dt

where Z represents a vector of the five slow, mean elements, n represents the mean motion,

and Awx represent the xth order contribution to the mean element rates for the wth element

(w = 1,2, ..., 6). Note that these expressions are for contributions to the mean element

rates. For this reason, the terms Aw,. are assumed to represent only long-period and

secular contributions--not short-period contributions and, therefore, do not contain the fast

variable. Since H is a function of the mean semi-major axis alone, it can also be thought of

as a "mean" element--the mean mean motion.

Now, the assumed form for the mean element equations of motion (equations (2.118)

above) can be substituted into equations (2.117) to produce expressions for the osculating

equations of motion in terms of the mean elements:

dci =[• )+E2 •'ijl - • • 2 DT k

dti=[Ai 2 Ai.2 (,2 () + . + E C..k + ---
d k Wk

for i= 1,2 ... 5; k= 1,2, ... , 6 (2.119)

Lfd = [_n + F, A6,1 (C) + : 62()+.. ••1.k + E: C3l2 k +..
dt aCk DCk
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The right hand sides of these expressions, which contain only the mean elements or

functions of the mean elements, will later be substituted into the left hand sides of equations

(2.115).

The perturbing functions on the right hand sides of (2.115), which are expressed in terms

of osculating elements, can be expanded in a Taylor series about the mean elements:

Fi(c,f)=Fi(C,f)+ Y I-Fi Ac+... , fori=l,2,..., 6 (2.120)
k = I L&kJmean elements

where Ac can be thought of as the difference between the mean elements and the osculating

elements (in other words, how far away the mean elements are from the osculating

elements). If the near identity transformation in (2.116) above is re-arranged (to first

order), the following expression for Ac is obtained:

Ci-Ci = Ac = ei1 , fori= 1,2,..., 5 (2.121)

or, when i = 6,

f-f = Ac = £16.1 (2.122)

These expressions can be substituted into (2.120).

Fi (c,f) = Fi (•,f) + £ X [T liil + HOT (E2)ki(c f = 1i ( f) + F : ai_• k mean elements T ' (2.123)

for i = 1,2, ... , 6
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In order to expand the entire right hand side of the second equation of (2.115) in a Taylor

series about the mean elements, the mean motion also must be expanded and expressed in a

power series of the small parameter:

n(ci) = no + c nj + E2 n2 +... (2.124)

where McClain [38] presents the values for nx:

no

n-
2 cl (2.125)

-n 2 3 tn

n2= -- 12 2
8 Z12 2 111

Substituting these expressions into (2.124), a series representation for the mean motion (in

terms of mean elements) is obtained:

n(c~l) E I - 111 rl] 2(I8'-L l,12 3+=T_ , +F- 111,ii ~Li 2 )
ncc12 2)cl 2c,+... (2.126)

Now, equations (2.119) can be plugged into the left hand sides and equations (2.123) and

(2.126) into the right hand sides of equation (2.115). Expressions for the osculating

equations of motion in terms of mean elements result:
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[e Aij, ) + r2 Ai.2 () + ... ] +en1 Ck + C2 .k +... =
aCk DCk

EF(• i(,f) + (• E • i.1 +..
k I Lack imean elements

for i = 1,2, ..., 5; k =1,2, ..., 6 (2.127)

_ _6,1 -- _2 aT16.2 -[H + F- A6,1 (^C) + E2 A6.2 P• + .+. Ea--C + Ck- C "'"

Ck Nk

23lJl' +e21I8- l1 2 -2 +-

E1
+£6-,)(2- i ' 16,1k+'

k 1 LF6k Imean elements

It is of importance to analyze the term ( Ck) with the understanding that Ck = dtk)

When k = 1,2, ..., 5, these terms are on the order of F2 or higher, since each term in the

first equation of (2.118) contains powers of F-. When k = 6, a term of the order of E

results, since the leading term in the second equation of (2.118) does not contain a power

of £ (refer to equations (2.128) for detail):
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____ a~I~dkI2 aTlo,
£ _Ci'k Ck =T- E (E A,1 () + e Ai 2(•) +

aCk aCk dt aCk

for k = 1,2, ..., 5

for i = 1,2, ..., 5 (2.128)

T. 1 6 =E 1 - £ (n + e A6,1 (C) +2A 6 2 () + ...
ac 6  3 dt af

for k =6

The termE ' n ) is, obviously, on the order of e. This detail is extremely important in

the next step of this derivation--equating like powers of e in equations (2.127):

i () + Hi''-n= Fi (,f)af

for i = 1,2 .... 5 (2.129)

A6.1(r-) 6.n F6 3f---11,

Re-arranging these equations provides a clean form for the first order contributions to the

osculating element equations of motion in terms of mean elements; the osculating equations

of motion in terms of osculating elements in (2.115) have been transformed to osculating

equations of motion in terms of mean elements:

89



Fosc EOMi (C,f) Aij (C)+ +

for i = 1,2, ..., 5 (2.130)

FoscEOM6 (•,f) = A6, 1 (C)+ + + =-"11,1
af 2 cl

Intuitively, these equations seem correct; the osculating rates (to first order) are equal to the

mean contributions (the "A" terms) plus the short period contributions (the "TI" terms).

These equations can again be re-arranged to yield expressions for the mean element rates

(to first order):

Ai,1 (C)= Fosc EOMi (,f) - -, n

for i = 1,2, ..., 5 (2.131)

A6 ,1 (C-) = Fosc EOM 6 (", 161 _ n 3_-B- 1ai 2 Zl11,1

Once again, these equations seem intuitively correct; the mean rates (to first order) are equal

to the osculating rates minus the short period contributions.

The mean fast variable that remains in these equations still contributes short-period

variations to the motion. The next step is to use the averaging operation to remove the fast

variable dependence in these equations, which removes short-period variations from the

long-period and secular variations to the motion. What results is an expression for the

90



mean element rates in terms of mean elements. If these mean element rates are then

subtracted from the osculating element rates, equations of motion for the short-period

variations in terms of the mean elements result.

As stated earlier in the chapter, the Aw,, terms in (2.130) and (2.131) contain no short-

period contributions (when the forms for the mean element equations of motion were given

in (2.118), it was assumed that the Awx terms did not contain the fast variable). The

FoscEOMi (for i = 1,2, ..., 6) are functions of the mean elements (including the mean fast

variable); therefore, these functions will contribute short period variations. Similarly, the Ti

terms will contribute short period variations (remember, iji,order are functions representing

the short-period terms that are 27 periodic in f). The averaging operation is used to "strip"

these short period contributions.

The averaging operation for'some function can be defined as follows:

(Function(cf) i = 2n j Function(, f) df (2.132)

With this definition, the averaging operation is a definite integral over the fast variable.

Term-by-term averaging of equations (2.131) can now be performed:
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(Aj~j(Z) = (FOsc EOMi (tAf )f n

for i = 1,2, ..., 5 (2.133)

(A6.1 ( f~ c (FS~M ( 2J) - i f ~~1.

Both expressions in (2.133) can be simplified through the use of properties of the

averaging operation (given by McClain [381). Two such properties that will help in

eliminating I'e short period contributions are:

(p Function(•,f) ) = p (Function(,f) )-

(2.134)

D Function(C-,f). --K ._nf) = (Function(c,tO
a9 Ck ? Dck for k = 1,2, ..... 6

where p is any function independent off. Using these two properties and knowing the

functions Tli.,order are 27c periodic in f, the following can be shown:

K-i-n =0

/ (2.135)

Using the same reasoning, it can also be shown that:

2 0 f(2.136)

92



The relations in (2.135) and (2.136) hold due to the fact that the "Tl" terms are 2nc periodic

in f. In effect, only enough is assumed about these terms to make them vanish. If these

terms are assumed to be centered about the mean element trajectory (similar to a generic

sine wave being symmetric about the "X" axis), they will go to zero if they are 2nt periodic.

Furthermore, when the functions containing the fast variable are averaged over the fast

variable, the dependence upon the fast variable is removed. Take, for example, the

hypothetical situation in which:

Fi (c,f) = cos f (2.137)

then

(Fi•f) - f w cosf df : 0
2t

(2.138)

since the cosine function is 2n periodic. However, this derivation does not need to be

limited to pure sines and cosines; whenever a definite integral with respect to a certain

variable is performed, the certain variable in these equations is replaced by the limits of

integration. In other words, the definite integral is performed, and the certain variable is

removed. This is the heart of the method of averaging. Whenever a function is averaged

with respect to the fast variable, a definite integral is performed and the fast variable is

replaced with the limits of integration. The function now represents its "average value"

over the averaging interval. In this fashion, the fast variable has been removed (or,

replaced), as well as the short-period variations.
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Substituting (2.135) and (2.136) into (2.133), and using the argument just described,

expressions for the mean element equations of motion in terms of the mean elements result:

Ai.1 (c) = (FoscEOMi(C,f). = Fmean EOMi(C) , fori= 1,2,..., 5

(2.139)

A 6 1 (ý) = ( scEOM6 (c-,t)f = Fmean EOM\ (C

In which (Ai, (C))i = Ai1 (C) and ( A6,1 (c)) = A6 1 (C) since the Aii terms are not

functions of the fast variable.

If the expressions in (2.139) are subtracted out of the osculating element equations of

motion given in (2.130), the short period equations of motion in terms of the mean

elements are obtained:

FoscEOMi (c,f) - Ai (c) = 1ii , fori 1,2,..., 5

(2.140)

~~ýT EO6 A. r6.1 +- n 11.1

Fo,,EOM6 (CIO)-AM,(~ n - n +1af 2 Cl

or, for consistent notation:
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FSp EOM, (c,f) = n , for i = 1,2, ..., 5

(2.141)

FsPEOM6  r!6.1 f +2 3

The equations in (2.139) and (2.141) represent the first order mean element rates and the

short period rates, respectively (both in terms of the mean elements). A semianalytic

propagator would independently propagate each set of these equations. The mean element

equation of motion propagation is usually acc .nplished through the use of numeric

techniques, since complex force models can be used and the accurate results inherent in

these techniques can be obtained in an efficient manner. The short-period terms, which

drive step size requirements in numeric techniques, have been removed in the mean element

equations of motion. Therefore, step size requirements will be driven by the much lower

frequency long-period variations. These larger step sizes allow for an efficient propagation

in terms of computational time.

The short-period equations of motion can be propagated either analytically or numerically.

Often times, these short-period variations are reconstructed analytically through the use of

Fourier series representation (all computational benefits are lost if numerical integration is

used); the Fourier series models the short-period eouations of motion as a series potentially

containing a constant plus sine and cosine waves, the integration of which is trivial. The

coefficients of this Fourier series are slowly varying. At a desired output time, the short

period contributions are added into the mean elements which arise from the propagation of

the mean element equations of motion. In this manner, all of the secular, short-period, and
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long-period contributions to the motion can be accounted for in the determination of satellite

ephemerides.

As an example, an expression for the gravitational potential in terms of equinoctial elements

averaged over 2. with the other variables held constant during the integration can be given

[7]:

Unr= (RCnme-im Vn fmslWfle 2 yP- 5 k,, (2.142)
S = .- 2

where

- 2-' j (_) ejmL dA (2.143)

2.3.2 Semianalytic Propagators and Orbit Determination

Semianalytic propagators play a major role in orbit determination (GD). A semianalytic

propagator can be thought of as an estimation tool which propagates a set of elements

through a desired time period--either forward or backward in time; all contributions to the

motion from perturbations are accounted for to produce an estimate of the satellite state at

the end of the desired time period. An OD system relates these estimates to actual

observations made with satellite tracking hardware. The OD system can then minimize the

difference between these observed and estimated values (this difference is often referred to

as the state residual) through the use of a differential correction process (in actuality, the

weighted least square of this difference is minimized). Within this differential correction

process, an iteration is performed to produce estimates which match the observations (or,
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minimizes the difference between the two). This iteration consists of the following

(assuming a satellite state is available at the specified epoch):

1. Estimate the satellite's trajectory over the desired time period with the orbit

propagator. Output can consist of state estimates at the end of the desired

time period or at multiple intervals within this time period.

2. Obtain actual observations at the same output times as in Step 1 with the OD

system using tracking hardware.

3. Compare predicted state with the actual observations at a given time.

4. Compute the state residual.

5. If the residual is large, adjust the initial state (i.e., elements) and input these to

Step 1 to find new state estimates.

6. Repeat until the state residual is within some acceptable tolerance.

In this manner, an OD system can potentially make several calls to an orbit propagator in an

attempt to accurately determine an orbit.
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Chapter 3

Stability Testing

3.1 Background

One of the primary tasks of this study was to investigate the Legendre polynomials,

associated Legendre polynomials, Jacobi polynomials, Hansen coefficients, and harmonic

coefficients. This investigation was undertaken to determine whether the computation of

these components (or their products) in the expansion to the 50x50 gravity field would

cause a violation of machine boundary limits or a loss of accuracy for high degree and

order. If a violation occurred with this expansion, then a switch to normalized components

of the potential would be in order. As an example, Cowell theory contains a product of

Legendre or associated Legendre polynomials and the harmonic coefficients. This product

is evident in the spherical harmonic form of the geopotential:

AL• I• (+n -Pn~m(sin 0)(Cn,mCOSmX + Sn.msinmX)]
r 2 ,&r +

n = 2 m =0 (3.1)

where

g. is the gravitational parameter

Re is the mean equatorial radius of the earth

r is the distance to the satellite from the origin of the coordinate system

reference frame
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Pn,m(X) is an associated Legendre polynomial of degree n, order m, and

argument x

Sis the satellite's latitude measured relative to the coordinate system

reference frame

Cnm, Sn,m are the spherical harmonic coefficients which are determined

empirically for a given body

X the body-fixed longitude of the satellite (measured positive eastward from

the Greenwich Meridian)

Normalized components possess sizes that are much better conditioned than the

corresponding un-normalized components; hence, they avoid the limits prescribed by

machine boundaries. Lundberg and Schutz [36] provide one typical set of expressions

which govern the transformation process from un-normalized to normalized values:

Nm= (n-m)! (2n+1) (2--80on) 1/2

Nn [ (n(m) (3.2)

with

Cn'm Sn_ m
Pni i Pn~m' Cnm -N Snf - S (3.3)

such that

Pn,m Cn, = Pnm Cn.m, Pnm Sn, = Pnm Sn.m (3.4)

where the Kronecker delta function is non-zero only when the order m is equal to zero.
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This chapter highlights the formulae used to compute the Legendre polynomials, associated

Legendre polynomials, Jacobi polynomials, and Hansen coefficients in the Cowell and

SST (mean element and short-periodic) branches of GTDS. The test tools and techniques

for this study will be described, as well as the results stemming from the computation of

these components. This testing will include a comparison of these components with "truth"

values.

3.2 Cowell Truth Model Description and Test Set-Up

For this study, normalized recursions for Legendre and associated Legendre polynomials

were built into a Q-floating standalone routine to compute Cowell accelerations. These

normalized recursions are given by Lundberg and Schutz [36]:

Pnjn (sin 4)) = cosineO Anan (sin 4)) (3.5)

where Pnm are the normalized polynomials and 4) is the geocentric latitude. If the degree

and order combination (n,m) indicates a sectorial term or a term in which the order m

equals (n-1), An,m takes the corresponding form:

(2n-l)!An(n 2n-1 )! (3.6)

2 (n-i)!

,I (_2.2 1)! ]
Anan1 = sin4 F2-1 (n-l)! (3.7)

For the zonal harmonics and remaining tesseral harmonics (i.e., with the exception of the

aforementioned condition of m = [n-1]), An,m is computed with the following equation:
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An,m = Nn (3.8)

where Nn,m is the normalization factor described in the preceding section and Anm is as

follows:

[(2n+l) (2n-i01 -1/2 (2 n+l) (n-m-l) (n+m-1)f'12A*ný = sin y I (n-- )(n-'m' ] An-l'm -[(2n-3) (n+m) (n-m) 1 An-21n

(3.9)

It should be noted that the recursion for Anm in (3.9) is one of six given by Lundberg and

Schutz. In the other recursions, the onset of instability occurs sooner and increases more

quickly than for the recursion given here. For this reason, Lundberg and Schutz

recommend the use of (3.9) for studies involving large values of degree and order.

The first step in utilizing the standalone truth model was to verify that it was coded

correctly. This truth model contains an independent coding of the equations given in

Section 2.2.1, Cowell Mathematical Techniques. In this manner, the truth model is

analogous to subroutine SPART within GTDS in that they both compute Cowell

accelerations. The differences between the truth model and SPART are two-fold: (1) the

truth model uses the Lundberg recursions, while GTDS uses the recursions outlined in the

GTDS Math Specification [26] and (2) the truth model contains an independent coding of

the equations offered in 2.2.1--not a "cut" and "paste" copy of what is inside of SPART.

Results produced from the Cowell functionality within GTDS are accepted as truth for the

21x21 class models GTDS is configured to implement. For this reason, if the Legendre

polynomials, associated Legendre polynomials, and Cowell accelerations obtained from the

truth model match the corresponding components from SPART, they can also be accepted

as truth.
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To this end, values for the polynomials were outputted from subroutine SPART in a

DEBUG run of the un-modified version of GTDS on the VAX. It should be noted that the

un-modified version of GTDS represents the previously tested 21x21 un-normalized

capability. In addition, polynomials outputted from the truth model needed to be un-

normalized for comparison purposes. Table 3.1 offers comparison results for four

representative degree and order pairs (one zonal, one sectorial, and two tesseral terms; one

tesseral term matches the condition where m= n-I as in (3.7) above):

Table 3.1 Un-Normalized Polynomial Validation
GTDS vs. Lundberg Truth

(n,m) GTDS Value Truth Value

(21,0) 0.385389365005720 0.385389365005720017620934469614764

(21,21) 405012060.632803 405012060.632780532468925736115058

(21,5) 354542.107743601 354542.107743597065734097685187394

(21,20) -2442182686.11423 -2442182686.11409981594492291939271

The results presented in Table 3.1, which are representative of results for several other test

cases and for other degree and order pairs, indicate that the recursions for the Legendre and

associated Legendre polynomials were coded correctly for the truth model.

The initial conditions for this test are summarized in Table 3.2:
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Table 3.2 Initial Condition Summary

Initial Condition Value

Inertial S/C Coordinate, X 180.295260378399 km

Inertial S/C Coordinate, Y -1145.13224944286 km

Inertial S/C Coordinate, Z -6990.09446227757 km

Geocentric Longitude -4.09449590512370 rad

Geocentric Latitude -1.40645188850273 rad

Radius of Earth, Re (GEM 1OB) 6378.138 km

Gravitational Parameter, I.t (GEM 10B) 398600.44 km 3/sec 2

Truth Model Precision Q-floating, REAL* 16, VAX

GTDS Precision G-floating, REAL*8, VAX (standard)

Similarly, results for Cowell accelerations are presented in Table 3.3:

Table 3.3 Cowell Acceleration Validation
GTDS vs. Lundberg Truth (21x21 GEMIOB)

GTDS Value Lundberg Truth Value

axb 8.653210294968294E- 7  8.653210294968288481236474144803601E-7

ayb. -6.515584998975128E- 6  -6.515584998975091510625442206439533E-6

azb -1.931032474628621E- 5  -1.9310324746286165283949632715512 ;'5E-5

It is of importance to note that GEM0 OB coefficients were used for this test since the un-

modified version of GTDS (21x21 field capability, un-normalized coefficients and

polynomials) is not configured to implement GEMT3 class coefficients. Furthermore, the
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test case described here represents only one discrete point along the Cowell integration; for

full validation and calibration, several points needed to be tested. The results of the other

points were in accordance with this test and, for the sake of brevity, are not documented

herein. After this testing, the truth model was determined to be properly implemented.

The next step was to isolate the recursions used for the polynomials in the Cowell portion

of GTDS and attempt to push them to the 50x50 capability in the un-normalized manner. If

this process was successful, then comparisons of the new version of GTDS (50x50 field

capability, un-normalized coefficients and polynomials) could be made against the truth

model. If this process was not successful, then modifications to implement normalized

recursions for the polynomials and normalized coefficients would have to be accomplished

before comparisons could be made to the truth model. It should be noted that the truth

model explained in this section applies solely to Legendre polynomials, associated

Legendre polynomials, and Cowell accelerations; the validation of a 50x50 field for orbit

determination purposes is discussed in Chapter 5.

3.3 Cowell Testing for 50x50 Fields

The recursions used by GTDS for the Legendre and associated Legendre polynomials in

the Cowell orbit generator are found in the GTDS Math Specification [26]:

(2n-l)(sin ý) Pn.l, 0 (sin 4) - (n-l)P_2,0 (sinO) (3.10)Pn.0 (sin •) = n(.0
n

Pnm(sin ) = P_ 2.(sin 0) + (2n-1)(cos4)P PIm-l (sin ) (3.11)

Pn,n (sin 4) = (2n-l) (cos 4) Pn- 1 .,-1 (sin 4) (3.12)
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which represent recursions for the zonal, tesseral, and sectorial harmonic terms,

respectively. The following initial conditions apply:

Poo0 (sin ý) = 1 (3.13)

P1.0(sin ) = sin 0 (3.14)

P 1.1 (sin ) = cos 0 (3.15)

It was found to be somewhat tedious to run GTDS on the VAX under the DEBUG option

in order to simply test the recursions or obtain Cowell accelerations. For this reason, a

VAX standalone version of subroutine SPART was developed to emulate the actual GTDS

version. The use of the GTDS emulation provided the capability to test the stability of the

recursions and product of the polynomials and harmonic coefficients withcut modifying the

actual GTDS code. If the stability was found to be insufficient in this manner, time would

not have been wasted in (1) modifying a large program (GTDS with 1000 subroutines and

approximately 125,000 lines of code) to use 50x50 coefficients in an un-normalized

fashion, (2) getting the program to compile, link, and run, (3) having the underflow or

overflow boundaries violated, and (4) re-modifying the code for a 50x50, normalized

gravity field model. In other words, this method was chosen in an attempt to maximize

efficiency and to eliminate non-productive efforts.

For verification and calibration of the GTDS emulation, a 21x21 GEM1OB run was

established and compared against the un-modified version of GTDS (2lx21 capability, un-

normalized coefficients and polynomials). Results for this validation test for polynomials

are included in Table 3.4 and for Cowell accelerations in Table 3.5:
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Table 3.4 Un-Normalized Polynomial Validation
GTDS Emulation vs. Actual GTDS

Degree and Order GTDS Emulation Value GTDS Value

n = 21, m = 0, zonal 0.385389365005720 0.385389365005720

n = 21, m = 21, sectorial 405012060.632779 405012060.632803

n = 21, m = 5, tesseral 354542.107743596 354542.107743601

n = 21, m = 20, m = n-1 -2442182686.11409 -2442182686.11423

Table 3.5 Cowell Acceleration Validation
GTDS Emulation vs. Actual GTDS (21x21 GEMIOB)

GTDS Emulation Value GTDS Value

axb 8.653210294968284E- 7  8.653210294968294E- 7

ayb -6.515584998975087E- 6  -6.515584998975128E- 6

azb -1.931032474628619E 5  -1.931032474628621E 5

Again, the initial conditions presented in Table 3.2 hold, as well as the consisitncy of

results with other degree and order pairs and other points along the Cowell integratio-'.

The accuracy of the standalone GTDS emulation is sufficient for test purposes.

A brute force approach using GEMT3 harmonic coefficients was chosen to initially test the

ability of recursions (3.10) through (3.12) to handle the 50x50 capability on the VAX. In

other words, the loops controlling the computation of the polynomials and the Cowell

accelerations were increased to handle the 50x50 capability; during the execution of the run,

if an error message was delivered stating that an underflow or overflow error occurred,

then it would be obvious that a switch to normalized coefficients would be in order.
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When this test was executed, no error message was received. Results comparing the

50x50 un-normalized polynomials (GTDS emulation) with Lundberg truth values are

presented in Table 3.6 (again, the truth polynomials needed to be un-normalized for

comparison purposes):

Table 3.6 Un-Normalized Polynomial Validation
GTDS Emulation vs. Lundberg Truth

(n,m) GTDS Emulation Value Lundberg Truth

(50,0) 9.634780379822722E-002 9.634780379823085161812315709569356E-0002

(50,50) 1.334572710963763E+039 1.334572710963775698820557920992278E+0039

(50,21) -1.443200082785759E+028 -14432000827857661203015450149.6553

(50,49) -8.047341511222794E+039 -8.047341511222872817916340126813171E+0039

Similarly, Cowell accelerations between the GTDS emulation and Lundberg truth for a

50x50 field could be compared to ensure that the Cowell accelerations were correct

(remember, Chapter 5 will discuss the impact upon orbit determination of 50x50 fields

within the modified version of GTDS).

Table 3.7 Cowell Acceleration Validation
GTDS Emulation vs. Lundberg Truth (50x50 GEMT3)

GTDS Emulation Value Lundberg Truth Value

axb 8.683465146150188E-007 8.683465146150193614319424992827359E-0007

ayb -6.51 9678538340073E-006 -6.519678538340080232354478851469384E-0006

azb -1.931876804829165E-005 -1.931876804829163932564593223959640E-0005
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Again, the initial conditions of Table 3.2 hold, with the exception of GEMT3 values for the

gravitational parameter and radius of the earth (398600.436 km 3/sec 2 and 6378.137 km,

respectively).

The GTDS emulation also serves to simulate the Sun Workstation (REAL*8 precision) and

Silicon Graphics (REAL*8 precision) environments. Both of these environments are in

accordance with the VAX G-floating GTDS emulation described in this section (refer to

Chapter 1, Table 1.3). Therefore, the VAX, Sun Workstation, and Silicon Graphics

environments will all support the 50x50 field with un-normalized harmonic coefficients and

un-normalized polynomials in their Cowell orbit generators.

Initial testing shows that a switch to normalized coefficients and normalized polynomials is

in order for the IBM mainframe. Even though the IBM system may be able to support

50x50 gravity fields, the machine limits are nearly violated with fields of this size; any

future modifications to further increase the size of the gravity field will require the use of

normalized polynomials and harmonic coefficients. Therefore, action to modify the IBM

code to support larger gravity field models in a normalized fashion should be made as soon

as possible. To this end, work has been done at Goddard to implement normalized

coefficients and polynomials in their version of GTDS [27]. Specifically, Goddard's

version of GTDS has been configured to implement 50050, normalized GEMT3

coefficients.

3.4 Stability Testing for Semianalytic Theory

In Chapter 2, the equinoctial form of the potential used by the semianalytic orbit generator

of GTDS was derived:
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n ii

u I I I Unjust (3.16)
n= 2 m=O s=-n t=-

in which

Uninst = Real { Unjmst (3.17)

and

Un=m.s t a a n 2n S (pq) - YT Cns(kh) e=-n " O) (3.18)

s=-n =-0

where the y,-S (k,h) terms are modified Hansen coefficients and the Srw (p,q) terms

contain embedded expressions for the Jacobi polynomials, Puw ('4. As mentioned in the

introduction to this chapter, the stability of the Hansen coefficients and Jacobi polynomials

required investigation. Specifically, it was desirable to determine if a loss of accuracy

would occur in the computation of these quantities at the higher values of degree and order

characteristic of this thesis. Proulx et al [47] provide recursions which are representative

of those used in the semianalytic orbit generator of GTDS. Sections 3.4.1 and 3.4.2

describe the stability testing of these representative recursions for the Jacobi polynomials

and Hansen coefficients, respectively.

3.4.1 Jacobi Polynomial Stability Testing

In Chapter 2, the following analytic expression was given to compute the Jacobi

polynomials:
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&a.b ~ = (a+n+ 1) n (n) T(a+b+n+m+l) (3.19)
n!r(a+b+n+1)M'=' Im 2tm F(a+m+1)

In order to enhance efficiency, GTDS computes these po lynomials recursively [47]:

2u(u+v+w)(2u+v+w-2) P"'(ý
(2u+v+w-l)[(2u+v+w)(2u+v+w-2)y +v 2 -w 2 ] pv~('- (320

-2(u+v-1)(u+w-1)(2u+v+w) Pvjw(-4

subject to the initial conditions

=- 0 (3.21)
=O I

where

+2q2 = Cos i (3.22)

T7his recursion can be re-expressed as a function of the indices given in (3.16):

(n-m+ 1) (n+m+ 1) (n) Pc44" = (2n+1) [(n+ 1) (n) y- mis] (3.23)

- (n-IsI)(n+IsI)(n+1) Pa' 0

for the polynomial1Pnl~ slnýs withlIsl1!ým , s Ž:0 ,or:

(n-m+1) (n+m+1) (n) Po~n-m = (2n+ 1) [(n+ 1) (n) y + m Is] Pm(324

- (n-IsI)(n+IsI)(n+1) Po"n- (324
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for the polynomial Pni m-Isl with sI m , s < 0, or:

(n-Is1+1)(n+Is1+1)(n) Pj = (2n+l)[(n+1)(n)y- mIsi] P-j
p.0S S (3.25)

- (n-rn) (n+m) (n+ 1) Pn(•32

for the polynomial PI0 s' 1ml. Is +m with I s I> m , s ! 0, and finally:

(n--IsI+1)(n+ I sI+l)(n) P• I -" (2n+l)[(n+ 1l)(n)y + mush PAs (3.26)
- (n-m) (n+m) (n+l) Poi, 1

for the polynomial 1 s•'I], Is--m with IsI > m, s <0.

Inherent in equations (3.23) through (3.26) are four distinct branches--the relationship

between IsI and m establishes two branches, each of which has a sub-branch dependent

upon the sign of s.

The methodology used to test stability was as follows:

(1) Compute the Jacobi polynomials using REAL*8 precision

(2) Compute the Jacobi polynomials using REAL*16 precision

(3) Sanity check results of (1) & (2) with Mathematica

(4) Determine relative error between REAL*8 and REAL* 16 implementations

The relative error was determined in the following way:
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REAL*16 polynomial - REAL*8 polynomial (3.27)
REAL* 16 polynomial

A standalone routine was built to compute the polynomials. Within this routine, the

following ranges were established for the indices of interest:

range of s = -n n or -50 = 50 (3.28)
range ofm = 0 n or 0 =50

The range for the degree n was dependent upon the relationship between the absolute value

of s and m. If I si _< m, the degree loop began at the value of m; if I sI > m, the degree

loop began at I s 1. These definitions avoided the singularities inherent in the recursion for

the Jacobi polynomials. In addition, these ranges ensured that all realistic cases for the

50x50 gravity field model would be tested. In other words, these ranges test all cases that

GTDS would encounter.

An inclination of 98 degrees was used for the Jacobi polynomial testing. This value for

inclination is characteristic of satellites in sun-synchronous orbits. Since the majority of

Draper's recent work has focused on satellites in sun-synchronous, repeat groundtrack,

frozen type orbits [30], this choice for inclination seemed logical. Specifically, the

RADARSAT program [18] was particularly interested in modeling the high degree and

order effects of the non-spherical earth perturbation.

The output of the standalone routine consisted of (1) a description of the polynomial pairs

whose relative error was greater than O.0D- 13 and (2) variables containing the number of

relative errors within the following ranges:
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relative error > 1.01D-10
1.0D-10 < relative error < 1.0D--11
1.0D1-11 < relative error < 1.0D-12
1.0D--12 < relative error _< 1.0D--13
1.OD-13 < relative error < 1.OD-14

1.0D-14 < relative error < 1.0D--15
1.0D-15 < relative error < 1.0D--16 (3.29)
1.13-16 < relative error • 1.13-17
1.0D-17 < relative error < 1.0D-18
1.OD-18 < relative error < 1.0D-19

relative error < 1.013-19

Table 3.8 describes the four largest errors which were outputted from the standalone

routine:

Table 3.8 Maximum Jacobi Polynomial Relative Errors

n m s Relative Errors

30 7 26 7.446533373947289220519607685322614E-0013

30 26 7 7.446533373947289220519607685322614E-0013

48 17 32 5.511849112982165177465394764316413E-0011

48 32 17 5.511849112982165177465394764316413E-0011

In the relative errors listed in this table, the symmetry between s and m in (3.23) through

(3.26) is evident.

The other relative errors listed in the output of the standalone routine were on the order of

the first two entries in Table 3.8 and, in order to avoid unnecessary repetition, were not

given here. It should also be re-emphasized that the values for the polynomials used to

construct the relative errors listed in this table (as well as the values for several other
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polynomials not listed in this table) were verified against polynomials generated with the

intrinsic function JacobiP in Mathematica. This intrinsic function computes Jacobi

polynomials for a given set of indices.

In all, a total of 82,075 polynomial pairs were analyzed (i.e. 82,075 REAL*8 values and

82,075 REAL*16 values). This total, however, does not account for the trivial cases in

which the values of both the REAL*8 and the REAL* 16 polynomials are zero. The error

distribution is given in the following table:

Table 3.9 Jacobi Polynomial Relative Error Distribution

Error Range Number of Errors

relative error > 1.0D-10 0

1.0D-10 _< relativeerror <_ 1.0D-11 2

1.0D-11 < relativeerror _< 1.0D-12 0

1.0D-12 < relative error _< 1.0D-13 35

1.0D--13 < relative error _< 1.0D-14 483

1.OD-14 < relative error _< 1.0D-15 3753

1.OD-15 < relative error < 1.0D-16 15804

1.OD-16 < relative error < 1.OD-17 7324

1.OD-17 < relative error < 1.OD-18 847

1.0D--18 < relative error < 1.0D--19 58

relative error < 1.OD-19 53759

This table indicates that almost 54,000 of the errors are beyond the 1.OD- 19 range. Of the

remaining errors, the majority falls into the 1.OD-15 to L.OD-16 range, which can be

expected since this range encompasses the boundary of computed digits for REAL*8
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variables. A total of 37 out of 82,075 errors (0.045 %) were larger than the output criteria

of 1.01D-13. It should be noted that the two largest errors were for a polynomial (n=45,

m=32, s=17 or n=45,m=17,s=32) with a relatively small value:

Table 3.10 Jacobi Polynomials for Maximum Relative Errors

Precision Polynomial Value

REAL*8 19.0564826584949109644639975158498

REAL* 16 19.0564826595452755348997439053899

Mathematica 19.05648265954527553489974390588687

where the value of the REAL*8 polynomial was extended to REAL* 16 precision to ensure

consistent mode operations for computational purposes (using the QEXTD intrinsic

function on the VAX). This means that 8 significant decimal places of accuracy have been

preserved for these entries. It is worth noting that all the Jacobi polynomial pairs listed in

the output of the standalone routine retained at least this many significant decimal digits of

accuracy.

The GEMT3 harmonic coefficients contain errors on the order of 1.0D-9 [35]. Since the

relative errors in the Jacobi polynomials (as determined on the VAX) are smaller than the

relative errors in the harmonic coefficients, the stability of the Jacobi polynomials can be

considered sufficient. This stability can be extended to include Sun Workstations and

Silicon Graphics Stations since the numerical boundaries for these environments are similar

(reference Table 1.4).
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3.4.2 Hansen Coefficient Stability Testing

In Chapter 2, the following expression for the Hansen coefficients was derived:

- e el'I X n e2i (3.30)
i-O i+ai+b

where X!i-a7i) are modified Newcomb operators, e is the orbital eccentricity, and It-sI is

the D'Alembert characteristic. This expre.sion represents a factored form of the

Newcomb-Poincare power series representation given by (2.56). Both (2.56) and (3.30)

contain Newcomb operator terms. The difference between the two sets of Newcomb

operators stems from the factored term given in (3.30). For clarity, the coefficients in

(2.56) are referred to as Newcomb operators, while the coefficients in (3.30) are referred to

as modified Newcomb operators.

The factored form for the Hansen coefficients given by (3.30) offers much better

convergence for high eccentricity cases (with no penalty for low eccentricity cases) than the

classical form given by (2.56) [48]. For this reason, recursive formulae representing the

factored form were used exclusively within GTDS. A power series representation of this

factored form was also used in a standalone program to generate Hansen coefficients at

Draper Laboratory [51]. Since this standalone program was readily available, it was

chosen to generate truth values for the stability testing of the Hansen coefficients.

The philosophy used to test the stability of the Hansen coefficients is similar to the

philosophy used to test the stability of the Jacobi polynomials:
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(1) Compute the Hansen coefficients recursively using REAL*8 precision

(2) Compute the "truth" Hansen coefficients using REAL* 16 precision with the

standalone Hansen coefficient generator

(3) Determine relative error between REAL*8 and REAL* 16 implementations

The relative error was determined in the following way:

REAL* 16 coefficient - REAL*8 coefficient (331)
REAL* 16 coefficient

The standalone program used to generate the truth Hansen coefficients for this thesis was

developed in the early 1980's. This program computes two separate quantities: Hansen

coefficients and Hansen coefficient kernels. The stability testing described in this section

focuses on the kernels of the Hansen coefficients, which are defined in the following way:

K-n-I.s = le)--)+3/2 • (n,•~
K (I- e2)(-nl) 3  X(-n'T1 s e2  (3.32)

i-' i+a~i+b

In this manner, the difference between the kernel and the actual Hansen coefficient is the

elt"s term.

For computational purposes, the standalone program accepts an input value for a

convergence criterion. Additional terms in the series representation are accumulated until

successive values of the sum meet the convergence criterion. This converged sum of the

series is multiplied by the (I - e2)(-'n-)+ 3/2 term to provide Hansen coefficient kernels.

For this thesis, an input convergence criterion of 1.OQ-25 and an eccentricity of 0.1QO

were used for the testing of the Hansen coefficients. To optimally test the sun-

synchronous, repeat groundtrack, frozen type orbit class of satellites described in the
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previous section, an eccentricity on the order of 0.001 would seem more logical.

However, the number of terms kept in the power series representation for the Hansen

coefficients is directly proportional to the value for the eccentricity; the number of terms

kept in the series decreases with decreasing eccentricity. The behavior of the Newcomb

operators is such that the power series expansion has the potential to rapidly oscillate before

converging [51]. Choosing a value of 0.1 for the eccentricity ensures that (1) the sun-

synchronous, repeat ground track, frozen type orbit class of satellites is adequately

addressed as well as (2) moderately testing the ability of the power series expansion to

converge.

The REAL*8 values for the kernels used in the stability testing were generated by a

separate standalone subroutine which implements the following recursion [47]:

K(nn-s X2  (1-n) (3-2n)
(3-n)(1-n+s) (1-n-s) (3)-. 2n (-n 1n 2ts ] Kt n+1-s +t 2 (-)Kt-+3,s (3.33)

-(2--n) [(3-n)(l-n)-,--]-i + t(l-n) }~ ~ ~~(.3

in which x = This recursion is representative of what can be found in GTDS. The

question which arises is how to properly initialize this recursion with the necessary "back"

values. GTDS computes the required back values using the power series representation.

For this thesis, the truth values generated by the standalone program were used as seeds for

the recursion. The subroutine built to implement (3.33) is called by the standalone Hansen

coefficient generator after the desired REAL* 16 kernels are computed via the power series

representation. The REAL* 16 values are then converted to REAL*8 values using the

DBLEQ intrinsic function on the VAX. With the required REAL*8 back values available,

the recursion in the standalone subroutine can be used to provide Hansen coefficients

which are representative of those computed in GTDS.
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The values of the modified Newcomb operators become very large for increasing values of

the index t. These large Newcomb operator provide for a poor initialization of the Hansen

coefficient recursion. For this reason, stability test cases were chosen to avoid these

extremities. Specifically, test cases were chosen for small values of the index t which

correspond to physical cases of interest. Small values of t lead to resonant effects for the

following combinations of indices:

(t=l, m=14), (t=2, m=28), (t=3. m=471 (3.34)
(t=tupperlimit, m= 14*tupperlimit)

for satellites completing approximately 14 revolutions per day. RADARSAT and

LANDSAT are two satellites which meet this criteria. A satellite theory implementing a

50x50 gravity field model would capture the first three combinations given in (3.34).

Since 50x50 fields were being studied in this thesis, the following ranges for the indices

were established for the stability testing:

range of t = 3 ( .3

range ofs = -50=•50 (3.35)

The range for the degree n was constrained to begin at the maximum of m and the absolute

value of s. The value for m was explicitly set using the resonant conditions given in

(3.34):

ift=1 , m=14
ift=2, m=28 (3.36)
ift=3 , m=42

Defining the constraints on the n index in this fashion avoided the singularities inherent in

(3.33).
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The output of the standalone routine consisted of a description of the Hansen coefficient

pairs whose relative error was greater than 1.0D-10. Table 3.11 describes the two largest

errors which were outputted from the standalone routine:

Table 3.11 Maximum Hansen Coefficient Relative Errors

t s n Relative Errors

1 -20 30 2.350551813300362360406304315194285E-0010

1 -20 31 2.350550581159087195163119706345606E-0010

In all, a total of 375 non-zero Hansen coefficient pairs (375 REAL*8 values and 375

REAL* 16) had relative errors greater than 1 .0D- 10. Each of these errors, however, was

on the order of the errors listed in Table 3.11. For the sake of brevity, only these two

relative errors were given.

The magnitude of the Hansen coefficients producing the relative errors listed in Table 3.11

is given next:

Table 3.12 Hansen Coefficients for Maximum Relative Errors

t s n Precision Polynomial Value

1 -20 30 REAL*8 18.5058791457064302221624529920518

1 -20 30 REAL*16 18.5058791500563330014506812052115

1 -20 31 REAL*8 56.7617696662896449311119795311242

1 -20 31 REAL*16 56.7617696796317860019196544494950

Again, it should be noted that the REAL*8 values have been extended to REAL*16

precision to ensure consistent mode operations for computational purposes (using the
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QEXTD intrinsic function on the VAX). This means that at least 7 decimal places of

accuracy have been preserved for these entries.

The Hansen coefficients with the maximum relative errors represent the resonant

combination (t=l, m=14). Inspection of (3.33) shows that the recursion for the Hansen

coefficients is based on the index n. The case (t=l, m=14) provides for the greatest range

on n (n ranges from 14 to 50 in this case). Since each value in the recursion is dependent

upon several back values, the relative error is dependent on the number of computations.

Therefore, it can be expected that the cases in which (t=l, m=14) should have the

maximum relative errors.

For some combinations of indices on the output report, a smaller number of significant

decimal digits was preserved. However, the magnitudes of the Hansen coefficients for

these cases were significantly larger. The Hansen coefficient pairs with the fewest number

of matching decimal digits is given in Table 3.13:

Table 3.13 Hansen Coefficients with the Minimum Number of Significant
Digits of Decimal Accuracy

t s n Precision Polynomial Value

1 -21 50 REAL*8 58136644.6921029016375541687011719

1 -21 50 REAL*16 58136644.7051783832809533162959757

Relative Error 2.249094647568210998385838268176701E-0010

For this combination of indices, only one significant decimal digit of accuracy has been

preserved. However, a total of 9 places (non-decimal plus decimal) of accuracy has been

preserved. This total number of places is consistent with the other Hansen coefficient
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results on the output report. Again, since these relative errors are no worse than the errors

in the harmonic coefficients, the stability of the Hansen coefficients was deemed

acceptable. This stability holds for the VAX, Sun Workstations, and Silicon Graphics

Workstations.
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Chapter 4

Draper R&D GTDS Description

4.1 Chapter Introduction

The purpose of this chapter is to describe the Goddard Trajectory Determination System

(GTDS), the orbit determination system that is the focal point of this thesis. First, an

overview of GTDS will be given, to include the various programs which comprise this

multipurpose computer system. Then, the developmental history of GTDS will be

described. This description will highlight the evolution of GTDS from the original version

built at the NASA Goddard Space Flight Center. Next, the various functions within GTDS

that are associated to gravity modeling will be outlined. This functionality includes

numerical, analytic, and semianalytic theories. Following this, the input processing and

database management pertinent to gravity modeling will be discussed. Finally, the code

modifications that were made to GTDS in support of the larger gravity field model will be

presented.

4.1.1 GTDS Overview

Draper Laboratory's version of GTDS (Draper R&D GTDS, hereafter referred to as

GTDS), is a descendant of the Goddard Trajectory Determination System dev-ioped for the

NASA/Goddard Space Flight Center. NASA's Operational GTDS Math Specification [261

describes GTDS as a multipurpose computer system designed to provide operational
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support for individual Earth, lunar, and planetary space missions and for the research and

development of the various space related projects. This orbit determination system, which

combines the disciplines of orbital dynamics, measurement modeling, and estimation

theory, includes the following programs [26]:

* Differential Correction Program

* Ephemeris Generation Program

* Ephemeris Comparison Program

* Filter Program

• Early Orbit Determination Program

* Data Simulation Program

* Error Analysis Program

• Data Management Program

• Permanent File Report Generation Program

The program descriptions which follow are taken from NASA's previously referenced

Operational GTDS Maui Specification:

The primary purpose of the Differential Correction Program (DC) is to estimate the

satellite orbit and associated parameters. The estimation algorithm used in the DC is called

the weighted least-squares with a priori covariance or the Bayesian weighted least-squares

algorithm. It minimizes the sum of the squares of the weighted residuals between the actual

and computed measurements, while simultaneously constraining the model parameters to

satisfy the a priori conditions to within a specified uncertainty. Both first and second order

statistics (i.e., the mean and covariance matrices) are determined for the estimated

variables. The DC is a batch processing method.
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The function of the Ephemeris Generation Program is to compute, from prescribed

initial conditions, the value at a specified time of the vehicle state and, optionally, the state

partial derivatives. Several orbital generator options have been incorporated into GTDS,

including time regularized Cowell, Cowell, Brouwer, Brouwer-Lyddane, and Variation of

Parameter methods.

The Ephemeris Comparison Program compares two input ephemerides. The

comparison can be specified over a particular arc or over the arc of overlap between the

ephemerides. The radial, along-track, and cross-track differences are computed and

output.

The Filter Program provides an alternative to the DC for estimating the satellite orbit and

parameters. The Filter Program contains Kalman (sequential) and Extended Kalman

(extended sequential) estimation algorithms. Sequential filters update the satellite state

recursively at each measurement point processed.

The Early Orbit Determination Program is designed to determine approximately an

initial estimate of a satellite orbit when there is no a priori estimate available to start a

differential correction process. This program provides three methods for achieving this:

(1) the Gauss Method, (2) the Double R-Iteration Method, and (3) the Range and Angles

Method.

The Data Simulation Program computes simulated tracking measurements of a

spacecraft from specified ground sites. The simulated data are generated for specified

measurement intervals and sampling frequencies. The program also has the capability to

simulate onboard attitude sensor measurements. Optionally, random and bias errors can be

added to the measurements. Measurements can also be modified to account for the effects
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of atmospheric refraction, antenna mount errors, transponder delays, and signal

propagation time delays.

The GTDS Error Analysis Program provides the capability of analyzing the effect of

tracking error uncertainties, solve-for vector uncertainties, and consider parameter

uncertainties associated with a specified orbit and station-dependent tracking schedule.

The primary function of the Data Management Program is to create working files of

data to be used by other programs in GTDS.

The Permanent File Report Generation Program outputs a report of the specified

permanent file.

In addition, there is a separate program to test, report, and maintain the physical model data

bases used by GTDS. This program is known as TRAMP [56,57,58].

4.1.2 GTDS Developmental History

As stated in Section 4.1.1, Draper Laboratory's version of GTDS is a descendant of the

original version developed at the NASA/Goddard Space Flight Center (GSFC). This

original version of GTDS was developed through the efforts of several individuals [16,45]

in the 1970-1976 time frame. It should be noted that Draper's version of GTDS is not the

only offspring of NASA/GSFC's original version. An operational version and a distinct

R&D version of GTDS at NASA/GSFC were also derived from the original version.

Draper's version, in turn, has spawned various other versions of GTDS. Figure 4.1

depicts the relationship among the various versions of GTDS:
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comprehensive short periodic models including zonal and tesseral harmonics, third

body point masses, atmospheric drag, solar radiation pressure, and certain second

order coupling terms

second order coupling terms for the mean element equations of motion (emphasis

on coupling of atmospheric drag and oblateness)

enhanced tesseral resonance capabilities for the mean element equations of motion

(both in terms of the number of allowable resonant terms and the extension to high

eccentricity cases)

third body point mass double averaging theory for the mean element equations of

motion

semianalytic theory for the partial derivatives including both the mean element state

transition matrix and the short periodic partials

comprehensive interpolation strategy including the mean elements, short periodic

expansion Fourier coefficients, and perturbed position and velocity (and associated

partial derivatives)

batch least squares estimator that can estimate the mean elements directly form

tracking data.

Kalman Filters including an innovative hybrid linear/extended filter than can

recursively estimate the mean elements directly from the tracking data
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additional sources and coordinate systems for Precise Conversion of Element

(PCE) observation data.

maintained and upgraded the data bases employed by the physical models

(geopotential models, solar activity/geomagnetic index file supporting the Jacchia-

Roberts density model, solar/lunar/planetary (SLP) ephemeris and timing

coefficient files)

included NORAD General Perturbation Theories SGP, GP4, DP4, HANDE, and

SALT

replacement of assembly language routines with equivalent FORTRAN 77

routines

conversion of the source code to well structured FORTRAN 77 (partially

completed)

This work was accomplished on Draper's CCF IBM Mainframe computers.

In 1989, the IBM version of GTDS was ported to Draper's CCF VAX 8650. This port

established a baseline VAX version of GTDS at Draper Laboratory. Initially, it was

desirable to possess a VAX version of GTDS to support the LANDSAT 6 program. This

program led to a version of GTDS on the DECKER VAX 8530 (located first at Princeton,

New Jersey and then at Lanham, Maryland). At the completion of the LANDSAT effort, a

BIGSIM VAX 8820 version was established at Draper to replace the CCF VAX 8650

version as Draper's baseline VAX version of GTDS. Currently, this BIGSIM version is

used to support the RADARSAT program at Draper Laboratory. This program initially
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planned to use gravity field models characteristic of those studied in this thesis. In fact, the

work for this thesis was funded by the RADARSAT program. Therefore, all work for this

thesis was carried out on the BIGSIM VAX.

In 1992, a Sun Workstation version of GTDS was created. This version resulted from a

port of the BIGSIM version to the "Earth" Sparcstation 1 at Draper Laboratory. In 1993,

this Sun Workstation version was ported, in turn, to a Silicon Graphics Station (SGI 220).

A description of these UNIX Workstation versions of GTDS (which are identical) is given

by Cefola [13]. Validation of the UNIX Workstation versions of GTDS against standard

benchmark cases is documented by Metzinger [41].

One tedious feature of the VAX and IBM versions of GTDS is the process used to invoke

portions of the Semianalytic Satellite Theory (SST) developed at Draper Laboratory; this

process involves setting various switches in three subroutines (HWIRE, ESTSET, and

SKFSET) and one block data (ESTFLG#). Changing the desired semianalytic capabilities

required (1) editing the appropriate subroutine or block data, (2) compiling the modified

code, (3) linking the resulting R&D GTDS program, and (4) execution. Recently, a SST

input processor has been developed in the Sun and SGI environments [11]. This input

processor eliminates the inefficiency of setting desired semianalytic capabilities. It is

planned to transfer this capability to the VAX system.

4.2 R&D GTDS Functionality Associated to Gravity Modeling

Within GTDS, much functionality is associated to the gravity model. This functionality,

for the most part, can be distinguished as stemming from numerical, analytical, or

semianalytical theories. This section will briefly outline the various functionality associated
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to the gravity model for each of these three theories. In addition, a description of the input

processing pertinent to this functionality will be given. The database maintenance of the

permanent earth and lunar potential files will also be discussed.

One functionality that is distinct from a specific type of theory is the Permanent Report

Generation Program. This program is used to output a report on the harmonic coefficients

and related data for the various gravity models within the GTDS permanent earth or lunar

files.

4.2.1 Numerical Theories

The basis for the numerical theory within GTDS is the Cowell Orbit Generator (OG). As

described in Section 2.2.1, the equations of motion are expressed in terms of the total

acceleration vector (i.e., point-mass central body effects plus perturbing accelerations) and

solved directly for the position and velocity vectors [261. Specifically, the position v rtor

is obtained using Stormer-Cowell numerical integration formulas, while the velocity vector

is obtained using Adams numerical integration formulas [26].

The variational equations comprise another subset of the numerical theory within GTDS

which is associated to the gravity model. In the differential correction process, the partial

derivatives of the current state vector with respect to the initial state vector are required.

These partial derivatives, which constitute the state transition matrix, can be obtained by

numerically integrating the system of variational equations in conjunction with the Cowell

orbit generator [26].
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4.2.2 Analytical Theories

GTDS also possesses several classical analytical theories which are associated to the

gravity model. These analytical theories are summarized in Table 4.1 [26]:

Table 4.1 Analytical Theories in GTDS Associated to the Gravity Model

Orbit Generator Limitations Comments

Brouwer .Singularities for e--O -Solution includes only J2

-Singularities for i=O deg through J5 effects

-Singularities for i=63.4 deg

-Elliptic motion only

Brouwer-Lyddane .Singularities for i=63.4 deg -Solution includes only J2

-Elliptic motion only through J5 effects

Vinti -Elliptic motion only -Solution includes only J2

through J4 effects

4.2.3 Semianalytical Theory

The Semianalytic theory can be viewed as having two distinct branches: mean element

(averaged) equations of motion and short-periodic equations of motion. These two

branches result from applying the generalized method of averaging to the Variation of

Parameters (VOP) equations of motion. To summarize what was presented in Chapter 2,

2the zonal harmonic (including J2 ) and tesseral resonance terms contribute to the mean

motion, while the zonal harmonic (including J2 ), tesseral m-daily, tesseral linear

combination, and J2/m-daily coupling terms contribute to the short-periodic motion. When

running the semianalytic theory in GTDS, the averaged equations of motion are always
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(automatically by default) used in the determination of a satellite's motion. On the contrary,

it is up to the user's discretion which short-periodic contributions to include. Again, the

implementation of the short-periodic option is currently system dependent. The UNIX

versions of GTDS use the Semianalytic Theory input processor, while the IBM and VAX

versions uses several "hardwired" switches which must explicitly be set within block data

ESTFLG# and the subroutines HWIRE, ESTSET, and SKFSET. It is planned to port the

Semianalytic Theory input processor to the IBM and VAX environments.

The gravity model related software in the Semianalytic Theory is separated according to

functionality. Figure 4.2 depicts the routines associated to the averaged orbit generator,

while Figure 4.3 depicts the routines associated to the short-periodic orbit generator (it

should be noted that the ordering of subroutines in this plot, as well as all the other

software tree plots in this thesis, has no significance; the ordering that is presented was

chosen out of convenience from the application in which these plots were generated):

[This space intentionally left blank.]
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Figure 4.2 Routines Associated to the Averaged Orbit Generator
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Figure 4.3 Routines Associated to the Short-Periodic Orbit Generator

The "shadowed" boxes represent subroutines which are devoted solely to the gravity

model. The "END" qualifier signifies subroutines which do not call other subroutines,

while the "CONT" qualifier signifies subroutines which do call other subroutines. The

"STUB" qualifier signifies subroutines which belong to Collins's double averaging

software [15,211--software which is present only in the IBM version of GTDS. PTESS,

which is a residual routine remaining from the initial tesseral averaging capability, is no

longer used. PTESRS is a routine built at Draper Laboratory to replace PTXRES, the

original routine designed to handle resonant effects. The work of Prolilx 149,501 describes

the tesseral resonance capability in GTDS associated to PTESRS. The boxes which
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contain vertical lines on the left and right edges represent gravity model related subroutines

which are depicted in greater detail in separate figures. These figures are given next:

PJ-MSPJ2MD

AUXPAR AVRAGE SPMDLY

(END) (CONT) (CONT)

CENANG J2PART VARDIF

(END) (END)

AVRAGE

(CONT)

Figure 4.4 J2/M-Daily Coupling Short Periodic (SPJ2MD) Software Tree

S P dSPMDLY

ASMBLY E1POLY INTHSM INTS

(END) (END) (END)

ACCUM H HMD

(END) (END)

Figure 4.5 Tesseral M-Daily Short Periodic (SPMDLY) Software Tree
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Figure 4.6 Tesseral Linear Combination Short Periodic (SPTESS)
Software Tree
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Figure 4.7 Zonal Short Periodic (SPZONL) Software Tree

139



Figure 4.8 Zonal Short Periodic Software Tree for Routines Under
ZONGEN

Plots for routines under EVESM 1, EVESM2, ODESMI, ODESM2, SNGESM, ECSUM 1,

ECSUM2, ECSUM3, and TERM can be found in Appendix D.

Mean element partial derivatives comprise another subset of the Semianalytical Theory

within GTDS which is associated to the gravity model. These partial derivatives, which are

used in the solution of "solve-for" quantities [261, are discussed in the work of Green [671

and Taylor [68].

4.2.4 Gravity-Related Input Processing

When running GTDS, "card decks" are used to describe input parameters. Typically, these

card decks contain keywords, three column dependent integer fields, and three column

dependent real fields. The keywords are used to identify program options or quantities

related to the program options. The integer and real fields are used to specify numerical

values related to the keywords. The sample card deck given in Figure 4.9 is set up to (1)
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generate a Cowell ephemeris listing and an associated ORB 1 file containing time-tagged

values of position and velocity, (2) use the Differential Correction Program to perform a

Precise Conversion of Elements to obtain a set of mean elements which correspond to the

osculating elements used by the Cowell orbit generator, (3) generate a Semianalytic

ephemeris listing with the computed mean elements and an associated ORB 1 file containing

time-tagged values of position and velocity, and (4) use the Ephemeris Comparison

Program to compare the two ORB I files.

Several gravity related key words from Figure 4.9 require additional explanation:

(1) The DATAMGT keyword provides for a global setting of parameters. In this

example, DATAMGT provides for a global setting of the POTFIELD keyword. The

POTFIELD keyword establishes gravity field model related parameters. The first and

second integer fields specify the earth as the central body and model number thirteen as the

desired gravity field model, respectively. It should be noted that having an OGOPT

subdeck in a CONTROL DATAMGT step is a capability developed at Draper Laboratory.

(2) The ORBTYPE keyword designates the desired orbit propagator. In this example,

the difference between the two usages of ORBTYPE stems from the first integer field. In

the first usage, the "2" signifies the Cowell orbit generator, while the "5Y in the second

usage signifies the Semianalytic orbit generator. The difference in step sizes which can be

used by the two theories is also evident in this example.

(3) The MAXDEGEQ keyword specifies the maximum degree of the gravity field

model to be used in the evaluation of the equations of motion of the satellite. The work for

this thesis extended the limit of MAXDEGEQ from 21 to 50.
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CONTROL DATAMGT LNDSAT-4 8207201

OGOPT
POTFIELD 1 13
END
FIN
CONTROL EPHEM LNDSAT-4 8207201
EPOCH 820224.0 0.0
ELEMENTI 1 2 1 7077.8 0.0011 98.2
ELEMENT2 158.1 89.4 176.0
OUTPUT 1 2 1 820226.0 0.0 43200.
ORBTYPE 2 1 1 10.0
OGOPT
MAXDEGEQ 1 50.
MAXORDEQ 1 50.
OUTOPT 1 820224000000. 820226000000. 3600.
END
FIN
CONTROL DC LNDSAT-4 8207201
EPOCH 820224.0 0.0
ELEMENT1 1 6 1 7077.8 0.0011 98.2
ELEMENT2 158.1 89.4 176.0
OBSINPUT 9 820224000000.0 820226000000.0
ORBTYPE 5 1 1 86400.0 1.0
DMOPT
OBSDEV 21 22 23 100. 100. 100.
OBSDEV 24 25 26 10. 10. 10.
END
OGOPT
MAXDEGEQ 1 50.
MAXORDEQ 1 50.
STATEPAR 3
STATETAB 1 2 3 4.0 5.0 6.0
END
DCOPT
PRINTOUT 1 4
CONVERG 30 1 I.D-5
END
FIN
CONTROL EPHEM OUTPUT LNDSAT-4 8207201
OUTPUT 1 2 1 820226.0 0.0 43200.
ORBTYPE 5 1 1 86400.0 1.0
OGOPT
MAXDEGEQ 1 50.
MAXORDEQ 1 50.
OUTOPT 21 820224000000.0 820226000000.0 3600.
END
FIN
CONTROL COMPARE LNDSAT-4 8207201
COMPOPT
CMPEPHEM 1102102 820224000000.0 820226000000.0 480.0
CMPPLOT 1 2.0
HISTPLOT 1102102 820224000000.0 820226000000.0 28800.0
END
FIN

Figure 4.9 Sample GTDS Card Deck to Fit Semianalytic Theory to Cowell
Theory
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(4) The MAXORDEQ keyword specifies the maximum order of the gravity field model

to be used in the evaluation of the equations of motion of the satellite. The work for this

thesis extended the limit of MAXORDEQ from 21 to 50. If the value of MAXORDEQ is

input to be greater than the value of MAXDEGEQ, the value for MAXORDEQ is set to

equal the value for MAXDEGEQ.

(5) The OUTOPT keyword provides output options. In this example, the value in the

first integer field specifies that an ORBI file should be written. The difference in the two

usages of the OUTOPT keyword provides for the first ORB 1 file to be written on the

primary unit and the second ORB 1 file on the secondary unit. It should be noted that the

OUTOPT keyword can also be used to provide ORBIT and EPHEM files. For a

description of ORBIT and EPHEM files, as well as a description for the other, non-gravity

related features of GTDS input processing, refer to the GTDS user's guide [53].

MAXDEGVE, MAXORDVE, RESONPRD, CNM, and SNM are five other keywords

related to the gravity field model which are not given in this example. They can be

described in the following manner:

(1) The MAXDEGVE keyword specifies the maximum degree of the gravity field

model to be used in the variational equations. This value must be less than or equal to the

value for MAXDEGEQ. The format for this keyword is similar to what is given for

MAXDEGEQ in Figure 4.9.

(2) The MAXORDVE keyword specifies the maximum degree of the gravity field

model to be used in the variational equations. This value must be less than or equal to the

value for MAXORDEQ. The format for this keyword is similar to what is given for

MAXORDEQ in Figure 4.9.
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(3) The RESONPRD keyword allows the user to set the minimum resonant

perturbation periods for VOP averaging (the default value for GTDS is 10 days). In other

words, if the period of the resonance is less than the default value of ten days, the resonant

effects will be considered to be short periodic and not included in the computation of mean

element rates due to analytically resonant perturbations [53]. For this thesis, the DMSP

orbit [6] was analyzed since this satellite completed very close to 14 revolutions per day.

In this manner, the effects at the 28th and 42nd orders would be emphasized--orders which

can be analyzed with the new 50x50 gravity field model capability. The period of the

resonance for the 42nd order was determined to be approximately 8 days. By setting the

minimum period of the resonance to 5 days with the RESONPRD keyword, the effects at

the 42nd order could be accounted for by the averaged orbit generator.

(4) The CNM keyword allows the user to specify a value for harmonic coefficient, C,

of degree n and order m (Cn,m). For this thesis, the CNM keyword was used to set J2 to

a small value so that its normal magnitude does not dominant the effects of the non-

spherical earth perturbation (the way GTDS is configured, a value of zero causes a run-time

error; for this reason, J2 is set to a small value rather than to zero). Specifically, setting J2

to a small value is a useful procedure for testing the linear high degree and order terms. An

example of this procedure can be found in reference [47].

(5) The SNM keyword allows the user to specify a value for harmonic coefficient, S,

of degree n and order m (Sn,m).

It should be noted that the POTFIELD and CNM/SNM keyword cards cannot appear in the

same subdeck. For instances in which it is desirable to use these keyword cards together

(i.e., in setting J2 to a small value), the CONTROL DATAMGT option can be used.
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4.2.5 Gravity-Related Database Maintenance

When making a run with GTDS, the user specifies on the POTFIELD card a desired

potential field model number. Draper's original version of GTDS was configured to

implement the following models:

Table 4.2 Earth Gravity Models, Original GTDS
NEWEARTHFLD.DAT

Model Number Description Size

1 Update of SAO 1969 Standard Earth Model No 1 15x15

2 Earth Potential for Manned Flight Computations 4x0

3 Goddard Earth Model One (GEM 1) 21 x21

4 Goddard Earth Model Seven (GEM7) 21 x21

5 Goddard Earth Model Nine (GEM9) 21 x21

6 Goddard Earth Model Ten B (GEM 10B) 21x21

7 World Geodetic System 72 (WGS72) 12x12

8 Goddard Earth Model L2 (GEML2) 21 x21

9 World Geodetic System 84 (WGS84) 12x12

In accordance with the modifications to allow GTDS to handle larger gravity field models,

the following field capabilities were added to GTDS:
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Table 4.3 Additional Earth Gravity Models, Modified GTDS
DANPOTENTIAL.DAT

Model Number Description Size

10 Goddard Earth Model Ten B (GEM0 OB) 36x36

11 Goddard Earth Model T2 (GEMT2) 50x50

12 Goddard Earth Model T2 Clone (GEMT2 CLONE) 50x50

13 Goddard Earth Model T3 (GEMT3) 50x50

14 Goddard Earth Model T3 Clone (GEMT3 CLONE) 50x50

15 Goddard Earth Model (GEM) T3S (Satellite Only) 50x50

16 World Geodetic System 84 (WGS 84) 41x41

17 Joint Gravitational Model One (JGM-1) 50x50

18 Joint Gravitational Model One Clone (JGM- I Clone) 50x50

19 Joint Gravitational Model Two JGM-2) 50x50

Models one through nine for original GTDS are stored on FORTRAN file number eight

(FRN 8), which is a direct access file. This file contains nine records which correspond to

the nine models used by original GTDS, each comprising 4200 bytes. This standard

number of bytes was established to meet the requirement that all records on a direct access

file have the same size. Therefore, when the new (larger) models were added to GTDS, an

additional permanent earth potential file needed to be built. This file was designated FRN

47 with each record comprising 21368 bytes (the next section will detail how this number

of bytes is derived). It should be noted that the same type of standard existed for the

permanent lunar model file (FRN 9). For this reason, FRN 48 was set aside to house

potentially new (larger) lunar filed models.
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As mentioned in Section 4.1.1, TRAMP is the program to test, report, and maintain the

physical model data bases used by GTDS. However, Draper Laboratory did not possess a

version of TRAMP until 1991. For this reason, Leo Early built WRITHARM.FOR, a

standalone routine to place 21x21 class gravity field models on FRN 8 [211. This routine

reads the harmonic coefficients from an existing file with the following format:

TITLE GEM 10B Earth potential coefficients.

NORMAL Normalized spherical harmonic coefficients.

RECTANGL Rectangular coordinates.

GRAVMASS 398600.44000000000

RADIUS 6378.1380000000000

MODEL 6

MAXDEGREE 21

MAXORDER 21

2 0 -4.8416551325533293D-04 0.OOOOOOOOOOOOOOOOD+00

3 0 9.5867438084322601D-07 0.OOOOOOOOOOOOOOOOD+00

4 0 5.4111656666666668D-07 0.OOOOOOOOOOOOOOOOD+00

21 17 -3.0979709938678087D-09 -1.3313422123388820D-08

18 18 5.2037600952278646D-09 -2.9178848383334230D-08

19 18 3.9148071185871325D-08 -2.5941339431748656D-08

20 18 4.1193894565491756D-09 7.6970610614978906D-09

21 18 1.9984043766283332D-08 -1.3325108719821466D-08

19 19 -6.8537933780577993D-09 8.1594160107248540D-09

20 19 5.4833208757996896D-09 2.3351964186700980D-09

21 19 -1.2835855169466875D-08 6.9449130651534003D-09

20 20 2.2428401436143970D-09 -9.4120038552482564D-09

21 20 -3.8797503612088120D-08 9.4653091390057133D-09

21 21 3.7589143961456210D-10 -1.0478099380488057D-08

Figure 4.10 EARTHFLDGEMlOB_21Y2!_NORREC.nAT
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The name for the files of this form are to be descriptive in nature, where (1) EARTHFLD

specifies the earth as the body for the coefficients, (2) GEMlOB specifies the particular

gravity model, (3) 21by21 is the model size, and (4) NORREC indicates normalized,

rectangular coordinate coefficients. As note (4) might indicate, WRITHARM accepts

normalized and unnormalized coefficients, as well as coefficients which are expressed in

polar or rectangular coordinates.

The top eight lines of Figure 4.10 are referred to as control cards. These control cards

describe the model and parameters related to this model. The column on the left side of this

figure represents the "C" and the column on the right the "S" coefficients.

It is evident that WRITHARM would require modification to support the 50x50 class

gravity models. DANWHARM.FOR, the modified version of WRITHARM built to

support these larger gravity field models, is described in the following section, which

outlines all the code related changes that resulted from this thesis.

4.3 Code Related Changes for 50x50 Gravity Field Models

When the decision was made to implement 50x50 gravity field models in GTDS, it was

obvious that several modifications were necessary to the existing code structure. For this

reason, much care was taken to ensure that all changes were documented in such a manner

that no question would arise when the new code was reviewed by people other than the

author of this thesis. To this end, a VAX CMS (Code Management System) 1611 Library

System was built to document all changes. The library system was established in the

following fashion:
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Figure 4.11 CHANGES CMS Library

A system of this type was currently in existence for the baseline, un-modified version of

GTDS (previously created through work for the LANDSAT 6 ODEG [331 effort at Draper

Laboratory). The use of CMS enables the FETCH, RESERVE, and REPLACE

commands. The FETCH and RESERVE commands provide access to a desired routine

from an established library. Typically, the FETCH command is used when it is desirable

to access a routine for reference purposes, while the RESERVE command is used when it

is desired to make modifications to a routine. The REPLACE command returns the

RESERVED routine to the appropriate library after modifications are complete (if a routine

has been FETCHED, it can simply be deleted from the local directory).

When a particular routine was in need of modification to support the 50x50 gravity field

model, it was FETCHED from the previously existing GTDS CMS library into the local

work area title WORK. Then, a new element was created inside of the CHANGES

library to house the baseline GTDS version. Next, the particular routine was RESERVED

from the CHANGES library [CHANGESLIB] back into the WORK directory so that the

desired modifications could be made. When the modifications were completed, the routine
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was REPLACED back into the CHANGES library [CHANGES_LIB]. The RESERVE

and REPLACE commands prompted the modifier to comment on the particular

modification that was being made, which was added to the routine to produce a CMS

version of the FORTRAN code for the particular routine within CHANGESLIB. In other

words, the CHANGES library [CHANGESLIB] maintains a history of all changes that

were made to elements within the library. The CHANGESREF directory maintains a

copy of the most recent version of all elements within CHANGESLIB.

When modifications were complete, all the elements within the CHANGES library could be

compiled and linked. The commands to perform these operations were placed in

CHANGESCOM, since the compilation and linking process was accomplished through

the use of command files. The executable version of GTDS resulting from the link process

was placed in CHANGES_EXE, even though the command procedure to run GTDS was

placed within CHANGESCOM. This methodology was established in order to preserve

consistency such that all command files would exist in CHANGESCOM. With these

tasks complete, GTDS could be executed to produce desired output.

As a final note, it should be mentioned that GTDS was modified in such a manner so that

changes of the nature being made for this study would not have to be made again in the

future. In the un-modified version of the code, several loops and constants pertinent to the

gravity field model were "hard-wired" consistent with the 21x21 field. An easy change

would have been to modify the code to "re-hard-wire" these values to be consistent with the

50x50 field; however, this process would need to be re-accomplished each time the field

size was to be increased. Therefore, the code was modified in a general manner as to

replace all of the "hard-wiring" that existed within the code; PARAMETER statements

corresponding to the field size were set in INCLUDE files. In this manner, future

modifications to increase the size of the gravity field model would consist of modifying the
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INCLUDE files, which are easily identified and easily modified. The specific

modifications made to GTDS will be described in the remaining sections of this chapter.

4.3.1 WRITHARM Replacement, DANWHARM.FOR

As was described in Section 4.2, WRITHARM is the standalone utility built to place 21 x21

class gravity field models on FRN8, the direct access file designated to store the harmonic

coefficients and related parameters. According to the GTDS Data Set Layout manual [19],

each record for the 21x21 class gravity field models comprises 4200 bytes. This number

of bytes is distributed in the following manner [19]:

Table 4.4 Distribution of Bytes for FRN 8

Bytes Description

1-4032 CS(I,J,1): 1=1,21; J=1,24. Array to store the harmonic coefficients

4033-4040 GM(1): Gravitational constant for the earth

4041-4048 AB(1): Mean radius of the earth

4049-4120 DESCR(I): 1=1,9. Model description

4121-4124 IMOD2: Model Number

4125-4128 NDEPF: Maximum degree

4129-4132 NDEFP: Maximum order

4133-4136 MEPDT: Number of earth potential models in Earth Potential File

4137-4140 MAXEP: Total number of records in Earth Potential File

4141-4200 Spare

The first four entries in this table represent real values (8 bytes), while the remainder of the

entries represent integ, - values (4 bytes). The 4032 bytes set aside for the CS array stem

from 8 bytes for each of the 504 elements (21 times 24).
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Obviously, a lay-out of the form given in Table 4.4 would not be sufficient for the 50x50

class gravity models. Since each record on a direct access file must be the same size,

FRN47 was set aside to house the larger earth potential models characteristic of this thesis

(FRN48 for lunar models). Table 4.5 describes the distribution of bytes for the 50x50

class gravity field models:

Table 4.5 Distribution of Bytes for FRN 47

Bytes Description

1-21200 CS(I,J,1): I=1,NUMCOF; J=I,NUMCOF+3. Array to store the

harmonic coefficients

21201-21208 GM(1): Gravitational constant for the earth

21209-21216 AB(1): Mean radius of the earth

21217-21288 DESCR(I): 1=1,9. Model description

21289-21292 IMOD2: Model Number

21293-21296 NDEPF: Maximum degree

21297-21300 NDEFP: Maximum order

21301-21304 MEPDT: Number of earth potential models in Earth Potential File

21305-21308 MAXEP: Total number of records in Earth Potential File

21309-21368 Spare

Note how the indices for the CS array in Table 4.5 use the generic variable NUMCOF,

which represents the maximum degree or order in the gravity field model. This generic

parameter was used in DANWHARM, the modified version of WRITHARM built to

support the larger gravity field models characteristic of this thesis. WRITHARM's

usefulness was limited because several variables and loops were hard-wired consistent with
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the 21x21 gravity field model. The use of a generic parameter in DANWHARM made the

utility compatible with gravity field models of any size; the user simply needs to (1) change

one PARAMETER statement corresponding to the limit of the gravity field model and (2)

compile and link the routine in order for the utility to be ready for use.

In DANWHARM, the NUMCOF parameter was first used to generically define the record

length variable, LENREC. Then, error checking statements, READ statements,

polar/rectangular conversion statements, WRITE statements, normalized/un-normalized

conversion statements, and loops for initializing the harmonic coefficients were updated to

use the NUMCOF parameter rather than hard-wired values. In addition, new logic was

added to ensure proper record and model numbers were placed on FRN47 (or, FRN48).

The logic in WRITHARM equivalenced the number of a particular record to its

corresponding model number. This logic would be unacceptable for the larger gravity field

models since the first record on the new file had to correspond to model number ten.

Furthermore, the common area CSHARM, which stored the harmonic coefficients for the

file construction process, was changed so that the array storing the harmonic coefficients

was dimensioned using NUMCOF.

Like WRITHARM, DANWHARM reads the harmonic coefficients and related data from an

existing file of the form given in Figure 4.10. Since most files containing harmonic

coefficients are not originally in this form, it is desirable to have a standalone utility which

transforms harmonic coefficient files to this required form. The file originally containing

the GEMT3 class coefficients was of the following form:
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RECOEF 2 0-0.48416510D-03 0.0

RECOEF 3 0 0.95720109D-06 0.0

RECOEF 4 0 0.53952118D-06 0.0

RECOEF5046-0.19618736D-08 0.21131540D-08

RECOEF4747 0.24329839D-08-0.34586492D-08

RECOEF4847 0.30067645D-08 0.51068087D-08

RECOEF4947 0.23909876D-08-0.13928952D-08

RECOEF5047-0.56725643D-08-0.81046041D-08

RECOEF4848 0.41555589D-08-0.19209609D-08

RECOEFý948 0.52270952D-10 0.97919626D-09

RECOEF5048-0. 10698637D-08-0. 19044138D-08

RECOEF4949 0.22865579D-08 0.11050793D-08

RECOEF5049 0.25218088D-08-0.49950067D-08

RECOEF5050 0.23135159D-08 0.19351819D-08

Figure 4.12 Form for Original File Containing GEMT3 Class Harmonic
Coefficients

GCSU2.FOR is a standalone utility built as part of the work for this thesis which takes

harmonic coefficients from the form given in Figure 4.12 to the required form. Obviously,

GCSU2 will require modification for harmonic coefficients which are not originally in the

form given by Figure 4.12. This standalone utility calls the function FACTORIAL.FOR:

GCSU2FOR

FACTORIALFOR

Figure 4.13 GCSU2.FOR Code Diagram
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In order to use GCSU2, the following steps are to be performed:

(1) EDIT GCSU2.FOR

(2) Check/update the file name in the OPEN statement for the input data file

(3) Check/update the file name in the OPEN statement for the output data file

(4) Check/update array dimensions in DIMENSION statements

(5) Check/update loop values for consistency with field contents

(6) Check the normalization option; the code assumes that the input must be converted

from normalized to un-normalized values.

(7) Check the READ and WRITE logic

GCSU2 must be compiled with the GFLOAT option activated. The called function,

FACTORIAL.FOR, is a REAL*16 implementation to compute factorials for the un-

normalization process. Therefore, it need not be compiled with the G-FLOAT option:

(8) FORTRAN/GFLOAT GCSU2 (if necessary)

(9) FORTRAN FACTORIAL (in necessary)

(10) LINK GCSU2,FACTORIAL (if necessary)

(11) RUN GCSU2

Next, the user must simply EDIT one of the existing files of the form in Figure 4.10, CUT

and PASTE the control cards into the top of the output which results from the execution of

GCSU2, and update the control carCs to the desired format.

DANWHARM interacts with the following routines:
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DANWHARM.FOR

DBLWRT.FOR R8SCHR8.FORHR8

Figure 4.14 DANWHARM.FOR Code Diagram

Before DANWHARM can be executed, a few items specific to the particular field must be

checked:

(1) EDIT DANWHARM.FOR

(2) Check/update PARAMETER statement concerning field size

(3) Check/update STATUS of file in OPEN statement. If model is to be added to a

currently existing file, set OPEN='OLD'; if model is to be added to a new file, set

OPEN='NEW'.

After the modifications to DANWHARM are complete, it must be compiled with the

GFLOAT option. Then, the following command can be given to link the appropriate

routines:

LINK DANWHARM,DBLWRT,R8CHR8,CHR8R8, (4.1)

SQUEEZ,MACHINBD
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where MACHINBD is a block data storing machine related constants. It should be noted

that the work for this thesis found an error in the include file MACHIN.CMN. LENINT, a

variable representing the number of characters in an integer, was updated to the correct

value of four.

With an executable version of DANWHARM in place, the command procedure established

to execute DANWHARM.EXE can be updated:

(1) EDIT DANWHARM.COM

(2) ASSIGN the augmented file created by GCSU2 to FOR001; this file is the input file

for DANWHARM.

(3) ASSIGN the output text file** to FOR002; this file i's a readable imitation of the

direct access file described in step 4.

(4) ASSIGN the output direct access file FOR003; this file is the desired permanent

earth/lunar potential file.

(5) ASSIGN the output data statement file to FOR004; this file contains data statements

reflecting the harmonic coefficients.

**Before executing DANWHARM.COM, the user must first set-up the output text file.

Specifically, the user must create a file that contains the two control cards describing

whether the coefficients are (1) normalized or un-normalized and (2) in polar or rectangular

coordinates. Figure 4.15 depicts the control cards for the GEMT3 coefficients:

UNNORMAL Unnormalized spherical harmonic coefficients.

RECTANGL Rectangular coordinates.

Figure 4.15 OUTPUTTEXTGEMT3_50BY50.DAT - Before Execution
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The other six control cards can be present, but are not needed. The following command is

given to execute DANWHARM:

@DANWHARM (4.2)

The output text file should have the following appearance:

TITLE GEMT3 Earth potential coefficients.

UNNORMAL Unnormalized spherical harmonic coefficients.

RECTANGL Rectangular coordinates.

GRAVMASS 398600.43599999999

RADIUS 6378.1369999999997

MODEL 13

MAXDEGREE 50

MAXORDER 50

2 0 -1.0826260759329829D-03 0.0000000000000000D+00

3 0 2.5325160388199548D-06 0.0000000000000000D+00

4 0 1.6185635399999999D-06 0.OOOOOOOOOOOOOOOOD+00

50 46 -1.3717248414582089D-82 1.4774987724116270D-82

47 47 3.2160895255855009D-81 -4.5718861784472441D-81

48 47 4.1205061855175162D-82 6.9984319811560448D-82

49 47 4.7779278981241307D-83 -2.7834326013414670D-83

50 47 -2.0135366786068120D-83 -2.8768149214169602D-83

48 48 5.8122593148274060D-83 -2.6867921146405210D-83

49 48 7.4993187434105878D-86 1.4048538595768350D-84

50 48 -2.2148019889428671D-85 -3.9424643270074909D-85

49 49 3.3138326157797472D-85 1.6015548206161991D-85

5u 49 j.7101033978679929D-86 -7.3486900870690090D-86

50 50 3.4036613725876561D-87 2.8470536476368229D-87

Figure 4.16 OUTPUTTEXTGEMT3_50BY50.DAT - After Execution

158



The data statement file should have the following appearance:

C

C Central-body spherical harmonics.

C

DATA CS (1, 1) / 0.0000000000000000D+00 /

DATA CS (2, 1) / -1.0826260759329829D-03 /

DATA CS (3, 1) / 2.5325160388199548D-06 /

DATA CS (40,53) / 0.OOOOOOOOOOOOOOOOD+00 /

DATA CS (41,53) / 0.OOOOOOOOOOOOOOOD+00 /

DATA CS (42,53) / 0.OOOOOOOOOOOOOOOOD+00 /

DATA CS (43,53) I 0.OOOOOOOOOOOOOOOOD+00 /

DATA CS (44,53) / 0.OOOOOOOOOOOUOOOOD+00 /

DATA CS (45,53) / 0.OOOOOOOOOOOOOOOOD+00 /

DATA CS (46,53) / 00000000000000000D+00 /

DATA CS (47,53) / 0.OOOOOOOOOOOOOOOOD+00 /

DATA CS (48,53) / 0.OOOOOOOOOOOOOOOOD+00 I

DATA CS (49,53) / 0.OOOOOOOOOOOOOOOOD+00 /

DATA CS (50,53) / 0.OOOOOOOOOOOOOOOOD+00 I

Figure 4.17 DATASTATEMENTSGEMT3_50BY50.DAT

The routines that accompany this permanent potential field file construction process can be

found in the following directory:

[DJF1230.50BY50.PASSCOM.GRAVDAT.PROULXI (4.3)
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4.3.2 Changes Shared by Cowell and Semianalytic Theory

The changes which were shared by the Cowell and Semianalytic orbit generators could be

distinguished by which common area, subroutine, or functionality the change was

associated with. For this reason, Section 4.3.2 will be further broken down into the

following: HRMCF, GEOVAR, FRCBD, LEGPOL, SETDAF , harmonic coefficient

READ logic, LUMPCS, and CSBLNK. This listing adequately addrý sses the

modifications which were shared by the Cowell and Semianalytic orbit generators.

4.3.2.1 HRMCF.CMN

The first and most obvious change within GTDS dealt with the CS array, which stores the

harmonic coefficients. For 21x21 class gravity field models, this array is partitioned in

such a manner that the C coefficients comprised the lower triangular and the S coefficients

the upper triangular portion of a rectangular matrix:

CN.M = CS (N, M+I) (4.4)

SNM = CS (22-N, 24-M) (4.5)

which is DIMENSIONED in the following fashion:

DIMENSION CS (21,24) (4.6)

For 50x50 class gravity field models, this storage arrangement requires modification:
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CN.M = CS (N, M+1) (4.7)

SNM = CS (51-N, 53-M) (4.8)

with

DIMENSION CS (50, 53) (4.9)

As mentioned in the introduction to Section 4.3, it was desirable to make changes in such a

manner that future modifications would not require a re-hash of modifications made in

support of this thesis. This meant that the "hard-wired" values related to the maximum

degree and order of the gravity model would need to be replaced. For this reason, the

general variable NUMCOF was defined to equal the maximum size of the gravity field

model:

DIMENSION CS (NUMCOF, NUMCOF+3) (4.10)

This variable was defined through the use of a PARAMETER statement within

HRMCF.CMN, a new include file built to store the array of harmonic coefficients. This

new include file needed to be built in order to minimize the modifications resulting from the

increased size of the array of harmonic coefficients. In the baseline version of GTDS, the

CS array was stored within block data FRC. In all, a total of 504 (21 times 24) locations

were reserved for this array. This number of locations would be insufficient for the 50x50

field (50 times 53 or 2650 locations). Therefore, two options existed for the

implementation of the new CS array: (1) leave the increased CS array within FRC and

"push" the variables stored "under" the CS array to new locations below the CS array or
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(2) house the CS array in a new include file and "dummy" out the 504 locations reserved in

FRC for the CS array. The first option would require a "re-equivalencing" of variables

"under" CS in all the routines that use these elements of FRC. The second option would

require the addition of the include file in each of the routines that touch the CS array. The

advantage of using the second option and HRMCF.CMN is that if the field size is increased

beyond 50x50 in the future, no new "re-equivalencing" would be necessary; rather, the

PARAMETER statement in HRMCF.CMN could be updated from 50 to the desired value--

a change which requires only one modification. In addition, the CS array is dimensioned

in a general fashion within HRMCF.CMN via (4.10). Since CS is dimensioned within the

include file, all DIMENSION statements for CS within GTDS can be removed. Similarly,

the NUMCOF variable is used in place of the hard-wired limits for loops or pointers

pertinent to the size of the gravity field model within GTDS.

The new include file is accessed in the following manner:

INCLUDE 'HRMCF.CMN' (4.11)

In should be mentioned that the block data associated with this include file (HRMCF.FOR)

is initialized with the same default gravity field that the original version of GTDS was

initialized with (GEMI, 21x21). This modification ensures that when no gravity field

model is specified on the POTFIELD card, the default gravity field model remains the

gravity field model that existed before any modifications were made.

The first step in identifying which routines would need to include HRMCF was to identify

which routines accessed the corresponding locations in FRC:
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CS(1,1) = RFRC(355)

(4.12)

CS(21,24) = RFRC(858)

Any routine which touched one of these 504 locations would need to include HRMCF. To

this end, a search was performed for all routines which utilized the common area set aside

for FRC. One tool which was extremely helpful in performing this search, as well as many

of the other code searches that were required for this thesis, was the GTDS link "map".

This map, which is a by-product of the procedure utilized to LINK the baseline set of

routines within the GTDS reference library, contains a list of each common area established

within the GTDS program along with the routines which access them. Using the

information contained in this map, each routine which accessed FRC could easily be

identified and analyzed to determine whether HRMCF needed to be included. It should be

noted that the development of software trees, such as those given by Figures 4.2 through

4.8, was also extremely helpful in locating routines which required modification.

Another change that accompanies the use of the INCLUDE statement is the removal of all

EQUIVALENCE and DIMENSION statements concerning the variables made available

through the introduction of the INCLUDE file. The following generic example outlines the

standard procedure used to update the reference of the CS array from FRC to HRMCF:
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Un-Modified GTDS

SUBROUTINE SUB1 (X, Y, Z)

COMMON /FRC/ RFRC(1300) , IFRC(51)

EQUIVALENCE ( CS(1,1) RFRC(355)

DIMENSION CS(21,24)

Modified GTDS

SUBROUTINE SUB1 (X, Y, Z)

INCLUDE 'HRMCF.CMN'

Figure 4.18 CS Replacement Example

with locations (355) through (858) replaced by the variab': DUMMY I in FRC:

DIMENSION DUMMY1 (21,24) (4.13)

In other words, the inclusion of HRMCF in the appropriate routines replaces the separate

DIMENSION and EQUIVALENCE functions required in the original version of GTDS.

164



It should also be noted that CS was often times represented as a one-dimensional array in

the original version of GTDS:

DIMENSION CS (504) (4.14)

This notation required a slightly different modification than the one outlined above; the CS

.•-ray defined in HRMCF would now need to be equivalenced to a one-dimensional array

established in the local routine. The following standard was utilized:

PARAMETER (LIMIT = NUMCOF * (NUMCOF+3))
DIMENSION CSLIN (LIMIT) (4.15)
EQUIVALENCE (CSLIN(1) , CS(1,1))

Each reference to the CS array in the local routine would be replaced by a reference to

CSLIN. This standard provided the functionality required with the generality needed to

support potential future modifications to increase the size of the gravity field model.

It should be noted that locations (859) and (860) within FRC are reserved for the CJ2NEG

array, which houses the (negative) value of the zonal harmonic J2 for the earth and moon.

These locations were preserved since this array's size need not be increased.

4.3.2.2 GEOVAR.CMIN

The second modification that was made to support the larger gravity field model was to

move the SINLAM and COSLAM arrays from FRC to a new include file entitled

GEOVAR.CMN. These arrays, which store the cosine and sine of the order m times the

geocentric longitude of the spacecraft. also have sizes dependent on the limits of the oravit\

165



field model. For the reasons outlined above, the decision was again made to store these

variables in a new include file rather than increasing the allocation within FRC. Origina!!y,

these arrays were defined in the following manner:

DIMENSION SINLAM (22) , COSLAM (22) (4.16)

with

SINLAM(1) = RFRC(1225)
SINLAM(22) = RFRC(1246) (4.17)

and

COSLAM(1) = RFRC(1247)
COSLAM(22) = RFRC(1268)

In GEOVAR, they were defined in a general fashion:

DIMENSION SINLAM (GEONUM+I)
DIMENSION COSLAM (GEONUM+I)

where GEONUM is another generic parameter representing the size of the gravity fi -ld

model.

The locations in FRC which stored SINLAM and COSLAM were "dummied" out in

accordance with the CS array:

DIMENSION DUMMY2 (22)

DIMENSION DUMMY3 (22)
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The search for CS, SINLAM, and COSLAM was conducted concurrently since all of these

arrays were stored in FRC.

In the un-modified version of GTDS, block data PASS contained TPSIM, which stored the

order m times the tangent of the spacecraft latitude:

TPSIM(l) = RPASS(45) (4.21)

TPSIM(22) = RPASS(66)

with

DIMENSION TPSIM (22) (4.22)

For purposes of consistency, the TPSIM array was also moved to GEOVAR:

DIMENSION TPSIM (GEONUM+I) (4.23)

In this manner, TPSIM could be stored along side the SINLAM and COSLAM arrays with

similar meaning. Inside of PASS, the locations corresponding to TPSIM was "dummied"

out:

DIMENSION DUMMY4 (22) (4.24)

As with HRMCF, the inclusion of GEOVAR permitted the removal of all DIMENSION

and EQUIVALENCE statements in the local routine which referenced the SINLAM,

COSLAM, and TPSIM arrays. These three arrays represent variables used by the Cowell

orbit generator.
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4.3.2.3 LEGPOL.CMN

Block data PASS also stored the array of Legendre or associated Legendre polynomials:

PMN(1,1) = RPASS(76) (4.25)

PMN(23,21) = RPASS(558)

with

DIMENSION PMN (23,21) (4.26)

Again, this size of this array needed to be increased in order to support the larger gravity

field model. A third include file named LEGPOL.CMN was built to house this array. In

keeping with the desire to make the gravity modeling capability general, the PMN array

was dimensioned in the following manner:

DIMENSION PMN (GEOCS+2, GEOCS) (4.27)

where GEOCS is another generic parameter representing the size of the gravity field model.

Inside of PASS, the locations corresponding to PMN was "dummied" out:

DIMENSION DUMMY5 (23,21) (4.28)

Again, the inclusion of LEGPOL permitted the removal of all DIMENSION and

EQUIVALENCE statements in the local routine which referenced the PMN array.
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4.3.2.4 FRCBD.FOR

Four other variables within FRC also required mLodification to allow implementation of

increased gravity field models: (1) NDEPF, the degree of the earth potential field; (2)

NOEPF, the order of the earth potential field; (3) NDMPF, the degree of the lunar potential

field; and (4) NOMPF, the order of the lunar potential field. The two variables pertinent to

the earth potential field were "hardwired" consistent with the 21 x21 models previously

used, while the lunar variables were configured for 3x3 models. In order to support the

50x50 gravity field models characteristic of this thesis, these variables have been explicitly

set to equal 50. If the limits of the gravity field model are increased in the future, these four

variables will have to be updated to support the desired model size.

4.3.2.5 SETDAF.FOR

Subroutine SETDAF.FOR is the routine within GTDS that opens the direct access files. In

order to support the new gravity field models stored on FRN 47 and FRN 48, SETDAF

needed to be modified. Specifically, two new OPEN statements were added to the code.

Conditional statements based on the model number were introduced to distinguish between

the "old" and "new" models. In addition, HRMCF was included so that the generic

variable NUMCOF could be used to specify record lengths.

4.3.2.6 Harmonic Coefficient READ Logic

Inside of GTDS, there are potentially six routines which could read the harmonic

coefficients from the permanent earth file: SETOG1.FOR, SETOG2.FOR, PCWF.FOR,
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HARM.FOR, OUTPPC.FOR, and SECUPD.FOR. The READ syntax was of the

following form:

READ (NEPOT'MODELNUMBER,ERR=980)

2 ((CS(J,K),J=1,21),K=1,24), GM(1), AB(1), (HEADER(I,3),I=1,9),

3 IMOD, NDEPF, NOEPF

Figure 4.19 "Old" Harmonic Coefficient READ Logic

Obviously, this syntax would require modification for the larger gravity models. First, a

conditional loop on the model number would be required. If the model number was less

than or equal to nine, a READ statement of form 4.19 would be acceptable. If the model

number was greater than nine, a new and general READ statement using the NUMCOF

variable would be required. The new READ syntax is depicted in Figure 4.20.

Several items of interest can be noted in the read logic in Figure 4.20. The IF loop checks

to see if the model number is indicative of a 21x21 class model GTDS was originally

configured to implement (FRN8, referred to as NEPOT). If it is, then the model is read

into the OLDCS2 array using 21x21 related logic. Then, OLDCS2 is manipulated so that

the values stored in this array are re-arranged to be consistent with the larger, general

gravity field limits. These re -arranged values are inserted into the CS array, which is

stored in HRMCF. In this manner, model numbers one through nine are read in using the

21x21 field format, but are converted to the larger, general field format for storage

purposes.
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C

IF (MODELNUMBER .LE. 9) THEN

C

READ (NEPOT, REC=MODELNUMBER, ERR=980)

1 C(OLDCS2(J,K),J=1,21),K=1,24),GM(1),AB(1),(HEADER(I,3),I=1,9)

2 ,IMOD, NDEPF, NOEPF

C

DO 775 N = 1,21

C

DO 776 M = 1,24

C

IF ((M-N) .LT. 2) THEN

CS(N,M) = OLDCS2(N,M)

ELSE

CS(NUMCOF+1-(22-N),NUMCOF+3-(24-M)) =OLDCS2(N,M)

ENDIF

C

776 CONTINUE

C

775 CONTINUE

C

ELSE

C

MODIFIEDMODELNUMBER =MODELNUMBER - 9

C

READ (NEWPOT,REC=MODIFIEDMODELNUMBER, ERR=980)

1 ((CS(J,K),J=1,NUMCOF),K=1,NUMCOF+3),GM(1),AB(1),(HEADER(I,3)

2 ,I=1,9),IMOD, NDEPF, NOEPF

C

END IF

C

Figure 4.20 New Harmonic Coefficient READ Statement
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The ELSE condition in Figure 4.20 is established to handle the models stored on FRN47.

First, the MODIFIEDMODELNUMBER variable is defined to equal the model number

minus nine. This logic ensures that the correct record number is read from NEWPOT

(FRN47). Remember, even though model ten is the first model number stored on FRN47,

it corresponds to the first record. Then, the coefficients can be read directly in to the CS

array using the NUMCOF variable. The larger, general fields do not require additional

manipulation to ensure correct storage in common area HRMCF.

The READ logic outlined in the preceding figure and paragraphs is the logic used in

subroutir.es SETOG1, SETOG2, PCWF, OUTPPC, and SECUPD. The READ statement

in subroutine HARM is modeled after the READ statement described in the ELSE

condition, above; it directly reads the coefficients into the CS array using the NUMCOF

variable.

4.3.2.7 LUMPPCS.CMN

It should be noted that SETOGI has the capability to read in two sets of harmonic

coefficients. This stems from the lumped geopotential capability in GTDS. As part of this

capability, GTDS computes the difference between the two sets of coefficients. In original

GTDS, this difference was stored in the DELCS array within common area STAGEO. The

following DIMENSION statement was used:

DIMENSION DELCS (21,24) (4.29)

As with the other changes described previously, a new include file was built to store this

array of differences. This common area, LUMPCS.CMN, implemented a generic

DIMENSION statement for the DELCS array:
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DIMENSION DELCS (LUMPNO, LUMPNO+3) (4.30)

where LUMPNO is another generic parameter representing the size of the gravity field

model.

The inclusion of this new common area affected only two routines: SETOG1.FOR and

SPARTV.FOR.

4.3.2.8 CSBLNK.CMN

Another common area in original GTDS which would not support the increased gravity

field models was the blank or unlabeled common. This blank common was essentially a

scratch area used by several routines (identifiable with the link map). Two forms of this

blank common are of interest for this thesis:

COMMON Al ,RTM(3) ,ITM(3) ,IERROR

2 JC ,LC ,IS ,JS

3 LS ,L ,IDENSW ,IC

4 RS ,RM ,RR ,IM

5 IDUM ,CSSTOR ,ICSTEM ,MODE

6 MODL NUMCS

Figure 4.21 Blank Common, Version 1

and

COMMON PTNTL(21,24)

Figure 4.22 Blank Common, Version 2
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Both of these forms of the blank common contain variables which are defined using

hardwired values reflecting the limits of the gravity field model. In the first version,

CSSTOR and ICSTEM are of concern, while PTNTL is of concern in the second. The

variables CSSTOR and PTNTL are arrays used to temporarily house the harmonic

coefficients. These variables were dimensioned in original GTDS in the following manner:

DIMENSION CSSTOR (21,24,2)
DIMENSION ICSTEM (504,2)
DIMENSION PTNTL (21,24)

The include file CSBLNK.CMN was built to store these variables. The DIMENSION

statements given in (4.31) were updated in the new include file:

DIMENSION CSSTOR (CSBNUM, CSBNUM+3, 2)
DIMENSION ICSTEM (CSBNUM*CSBNUM+3, 2) (4.32)

DIMENSION PTNTL (CSBNUM, CSBNUM+3)

where CSBNUM is another generic parameter representing the size of the gravity field

model.

CSBLNK was included in HARM.FOR, OUTPPC.FOR, SETOG 1 .FOR, SETOG2.FOR,

and SETORB.FOR. With the addition of this include file, the location for CSSTOR and

ICSTEM were replaced by the dummy variables DAN] and DAN2, respectively. These

dummy variables were dimensioned consistent with the values in (4.31) so that locations

"below" these variables could be preserved. With respect to Version 2, the entire line of

the form given in Figure 4.22 could be removed, since this variable was now stored in

CSBLNK.
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4.3.3 Changes Unique to the Semianalytic Theory (SST)

In the preceding section, a standard pattern was described for increasing the size of an array

with limits dependent upon the maximum degree and order of the gravity field model. This

pattern consisted of the following steps:

(1) Locate all occurrences of the array in need of modification (usually within a

common area)

(2) Construct a new include file and associated block data to house the array

(3) Dummy-out the locations in the "old" common area so as to preserve the locations

below the array in need of modification

(4) INCLUDE the new include file in the appropriate routines

In the update of the SST related code, this pattern continued to hold. One new wrinkle that

was incorporated into this pattern was the conversion of an entire common area to an

include file and an associated block data. When analyzing the SST code, it was discovered

that most of the common areas did not have a pre-existing block data before execution of

the code; rather, the common area was defined during execution of the code. For purposes

of consistency, common areas that were identified to contain an array that was in need of

modification were converted to an include file and associated block data. A change of this

type required heavy reliance on the link map; this map would allow the identification of all

routines which would require the inclusion of the new include file. In addition, care would

need to be taken to ensure that the addition of the new include files would not introduce a

variable which would have a conflicting name with a variable local to the routine in

question. Furthermore, it was vital to identify if any of the arrays in question were passed

175



to other routines through calling sequences. If this type of passage occurred, the potential

to update DIMENSION statements in the called routine may exist. The software trees

given in Section 4.2.3 were very useful in analyzing the flow of the code for the SST. The

paragraphs which follow describe the construction of new include files and associated

block datas for the SST related code.

4.3.3.1 ANAV1.CMN

ANAVI was the first common area identified to be in need of modification. This common

area, which is used in routines developed for the initialization of the averaging model 1551,

was defined in the following manner in the un-modified version of GTDS:

COMMON/ANAVI / TOLER X ,XX ,GAMMA

1 SINISQ ,FACT(44) ,EPWR(22) ,HAFPWR(22)

2 XPWR(22) ,SINPWR(43) ,ONEGPW(43)

Figure 4.23 ANAVI Definition

This common area listing contains several arrays which have sizes dependent upon the

degree and order of the potential field model. Table 4.6 lists these variables and their

definition:
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Table 4.6 ANAVI Variables

Variable Definition

FACT Array of factorials

EPWR Powers of e

Powers of 1HAFPWR 2
x for a = 0, 1, ... , nend

XPWR [2 (1-- 2)]0

SINPWR Powers of the sine of the inclination

ONEGPW (1 +cosi)cosui for a=0, 1, ..., (nend- 1) forlower portion, and
cosp i for (Y = 0, 1, ..., (nend - 1) for upper portion of array

(1 +cos i)

The new include file ANAVI.CMN utilized the following, general dimension statements:

DIMENSION FACT (2*POTNUM+2)

DIMENSION EPWR (POTNUM+1)

DIMENSION HAFPWR (POTNUM+) (.33)

DIMENSION XPWR (POTNUM+l)

DIMENSION SINPWR (2*POTNUM+1)
DIMENSION ONEGPW (2*POTNUM+I)

where POTNUM is another generic parameter representing the size of the gravity field

model.

Using the link map, it was determined that ANAVI needed to be included in the following

routines:

ANHARM.FOR

ANTHIR.FOR
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AUXTRN.FOR

DBOUND.FOR

RBOUND.FOR

4.3.3.2 AVEPOT.CMN

AVEPOT.CMN is an include file built to hold arrays with sizes dependent upon the limit of

the geopotential model in the routines which fall unaer PZONAL.FOR, PTHIRD.FOR,

and PTIDE.FOR. Specifical'y, the variables XJRAN, ARN, QNM, and GAMMAN were

removed from the common area ANAV2 and placed into AVEPOT. These variables are

defined in the following manner:

Table 4.7 AVEPOT Variables

Variable Definition

XJRAN J (n)* for n = 2, 3,..., nend

_ (a)n for n=2,3, ... , nend

QNM Q(n,m) for n = m, m+2, m+4, ..., nend

GAMMAN (2n - 1) y for n = 2, 3, ... , nend

The include file AVEPOT dimensioned these variables in the following way:

DIMENSION XJRAN (DEGORD)
DIMENSION ARN (DEGORD)
DIMENSION QNM (DEGORD/2 + 1)
DIMENSION GAMMAN (DEGORD)
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where DEGORD is another generic parameter representing the size of the gravity field

model.

AVEPOT was included in three routines:

FSUM.FOR

HSUM.FOR

TSUM.FOR

4.3.3.3 GRAVITY.CMN

GRAVITY is an include file that was developed to potentially provide a set of variables

related to the limits of the gravity field model that could be used by all routines within

GTDS. This definition of variables could potentially provide a single point of reference for

gravity related indices, loop counters, and variables with which to DIMENSION arrays. If

the limits of the gravity field model are to be increased in the future, the modifier would

simply have to drop the correct values into this common area; no other modifications would

be necessary.

Figure 4.24 depicts the current definition of variables in GRAVITY. It should be noted

that this listing can augmented as required in the future to support further potential-related

work.
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C Data Types

C

C

INTEGER FIELDSIZE

INTEGER TWOFS1

INTEGER TWOFS2

C

C

C Parameter Statements

C

PARAMETER (FIELDSIZE = 50)

PARAMETER (TWOFS1 = (2*FIELDSIZE) + 1)

PARAMETER (-WOFS2 = (2*FIELDSIZE) + 2)

C

Figure 4.24 GRAVITY Variables

4.3.3.4 MDWRK.CMN

MDWRK, which is related to the m-daily capability in GTDS, is one common area that was

entirely converted to an include file and associated block data. This common area contained

the arrays SIRE and SICX, which have sizes dependent on the limits of the gravity field

model. They are defined in Table 4.8:

Table 4.8 MDWRK Variables

Variable Definition

SIRE Array of real parts of (a +j 13), where alpha and beta are direction cosines

SICX Array of imaginary parts of (ax + j P)

These variables were dimensioned within MDWRK.CMN in the following manner:

180



DIMENSION SIRE (NUMPOT + 2)
DIMENSION SICX (NUMPOT + 2)

where NUMPOT is another generic parameter representing the size of the gravity field

model.

The link map indicated that the following routines needed to include MDWRK:

ACCUM.FOR

ASMBLY.FOR

EIPOLY.FOR

HSMMD.FOR

INTHSM.FOR

INTS.FOR

SPMDLY.FOR

4.3.3.5 NUKES.CMN

NUKES is an include file built to accompany the previously existing block data

NUKESBD.FOR. This common area stores the Newcomb operators, which are used to

build the Hansen coefficients required in the equinoctial formulation of the potential. In the

version of NUKESBD.FOR in the un-modified version of GTDS, the following

PARAMETER statement was used to define the total number of Newcomb operators (a

number based on the D'Alembert characteristic and loop indices associated to the gravity

model):
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PARAMETER (NNUKE : 36000)

Figure 4.25 NUKESBD.FOR, Original GTDS

To support the 50x50 class gravity field models, this number required modification:

PARAMETER (NNUKE = 52962)

Figure 4.26 NUKES.CMN, Modified GTDS

This PARAMETER statement was moved to the newly created include file NUKES.CMN,

which was included in the new version of NUKESBD.FOR.

4.3.3.6 PTSDAT.CMN

In addition to AVEPOT, the common area ANAV2 in original GTDS led to the

development of a second include file and associated block data. PTSDAT was built to store

arrays with sizes dependent upon the limits of the gravity model for routines which fall

under PTESS.FOR. Table 4.9 describes these variables:

Table 4.9 PTSDAT Variables

Variable Definition

GLAST G(L-RETRG*M- I,L- 1,M)(1,+ 1)

HLAST H(L-RETRG*M-1,L-I,M)(1 ,+1)

GLASTX G(L+RETRG*M- 1 ,L- 1 ,M)( 1,-i)

HILASTX H(L+RETRG*M- 1 ,L- 1,M)(1,- 1)

DPDDX DPD where PD = a) Modified Hansen Coefficient
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It should be noted that the DPDDX array was stored in the common area ANAV3 in

original GTDS. Since this array was used in routines which fell under PTESS.FOR, it

was also stored in PTSDAT.

These variables were dimensioned in the following way in PTSDAT:

DIMENSION GLAST (ORDDEG - 1)
DIMENSION HLAST (ORDDEG - 1)
DIMENSION GLASTX (ORDDEG- 1) (4.36)
DIMENSION HLASTX (ORDDEG- 1)
DIMENSION DPPDX (ORDDEG)

where ORDDEG is another generic parameter representing the size of the gravity field

model.

PTSDAT was included in five routines:

FINIT.FOR

FNEWM1.FOR

FNEWM2.FOR

PDNEWM.FOR

TSUMN.FOR

4.3.3.7 SPREAL.CMN

SPREAL was another common area that was entirely converted to an include file and an

associated block data. This common area contains real variables used by the short-periodic

generator, which is used by the semianalytic orbit gciaerator. Table 4.10 defines the arrays

that had sizes dependent upon the degree and order of the geopotential model.
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Table 4.10 SPREAL Variables

Variable Definition

CTRUE C coefficients of the true longitude expansion

STRUE S coefficients of the true longitude expansion

CECCEN C coefficients of the eccentric longitude expansion

SECCEN S coefficients of the eccentric longitude expansion

CLAMDA C coefficients of the mean longitude expansion

SLAMDA S coefficients of the mean longitude expansion

CTHETA C coefficients of the theta expansions

STHETA S coefficients of the theta expansions

CDOUBL C coefficients of the lambda-theta double expansions

SDOUBL S coefficients of the lambda-theta double expansions

CCOEF C coefficients to be added into one of the single angle expansions

SCOEF S coefficients to be added into one of the single angle expansions

CFCTRU C interpolator coefficients for the true longitude expansion

CFSTRU S interpolator coefficients for the true longitude expansion

CFCECC C interpolator coefficients for the eccentric longitude expansion

CFSECC S interpolator coefficients for the eccentric longitude expansion

CFCLAM C interpolator coefficients for the mean longitude expansion

CFSLAM S interpolator coefficients for the mean longitude expansion

CFCTHT C interpolator coefficients for the theta expansions

CFSTHT S interpolator coefficients for the theta expansions

CFCDBL C interpolator coefficients for the lamda-theta double expansions

CFSDBL S interpolator coefficients for the lamda-theta double expansions
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These variables were dimensioned in the following, general way in the include file

SPREAL.CMN:

DIMENSION CTRUE (6,TFDPL2) ,STRUE (6,TFDPL2)

DIMENSION CECCEN (6,TFDPL2) ,SECCEN (6,TFDPL2)

DIMENSION CLAMDA (6,FDMIN1) ,SLAMDA (6,FDMIN1)

DIMENSION CTHETA (6,TFDMI2) ,STHETA (6,TFDMI2)

DIMENSION CDOUBL (6,DUBNUM) SDOUBL (6,DUBNUM)

DIMENSION CCOEF (6,TFDPL2) ,SCOEF (6,TFDPL2)

C

DIMENSION CFCTRU (SPINCI) ,CFSTRU (SPINCI)

DIMENSION CFCECC (SPINCI) ,CFSECC (SPINC2)

DIMENSION CFCLAM (SPINC2) ,CFSLAM (SPINC2)

DIMENSION CFCTHT (SPINC3) ,CFSTHT (SPINC3)

DIMENSION CFCDBL (SPINC4) ,CFSDBL (SPINC4)

where

PARAMETER (ECCNUM = 4)

PARAMETER (TFDPL2 = (2 * FLDDIM + 2))

PARAMETER (FDMIN1 = (FLDDIM - 1))

PARAMETER (TFDMI2 = (2 * FLDDIM - 2))

PARAMETER (DUBNUM = (FLDDIM*(2*(FLDDIM+ECCNUM)+1)))

C

PARAMETER (SPINCI = (4*6*TFDPL2))

PARAMETER (SPINC2 = (4*6*FDMIN1))

PARAMETER (SPINC3 = (4*6*TFDMI2))

PARAMETER (SPINC4 = (4*6*DUBNUM))

Figure 4.27 DIMENSION Statements for SPREAL

where FLDDIM is another generic parameter representing the size of the gravity field

model. It should be noted that the definition of DUBNUM has operational implications.

This set-up corresponds to low to medium eccentricity orbits utilizing the entire 50x50
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field. Specifically, the choice of MITS, LTS, JMINTS, and JMAXTS in HWIRE.FOR

(refer to Appendix B) should consider DUBNUM.

The link map indicated that the following routines needed to include SPREAL:

ANLWRT.FOR

HWIRE.FOR

KFHIST.FOR

MiEANOSC.FOR

OSCMEAN.FOR

SETSPG.FOR *

S KFPRT.FOR

SPANAL.FOR

SPCOEF.FOR

SPCOTO.FOR

SPDEFF.FOR

SPGENR.FOR

SPINIT.FOR

SPINTP.FOR

SPMOVE.FOR

SPNUM.FOR

SPNUM2.FOR

SPORB .FOR

SPORBP.FOR

SPSKF.FOR

VRSPFD.FOR
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*A subroutine which originally was envisioned for use as part of a short-periodic input

processor. This subroutine represents a stub, and is not called inside of the IBM and VAX

versions of GTDS.

4.3.3.8 SPZONB.CMN

SPZONB was another common area that was entirely converted to an include file and

associated block data. This common area, which is related to the zonal short periodic

model, was defined in the following manner in original GTDS:

COMMON/SPZONB/ XJRAN(21) ,V(22) ,D(22) ,Q(22)

2 CKH(23) ,SKH(23) ,CAB(23) ,SAB(23)

3 XMUNA ,XMUNA2 ,XCUBE ,XMUNAK

4 XMNA2K ,GENCOS(41),GENSIN(41),GCOSDA(4)

5 GSINDA(4) ,GCOSDH(4) ,GSINDH(4) ,GCOSDK(4)

6 GSINDK(4) ,GCNDAL(4) GSNDAL(4) ,GCOSDB(4)

7 GSINDB(4) ,GCOSDG(4) ,GSINDG(4) ,HMSUM

8 HSUMDA , HSUMDX ,HSUMDG , HPOLY

9 GPOLY ,DHDAL ,DHDB ,DGDAL

1 DGDB ,DHDH ,DHDK ,DGDH

2 DGDK ,VCURR ,QCURR ,DCURR

3 DDDXCR ,DQDGCR ,XIPOLY ,XJPOLY

4 DIDAL ,DIDB ,DJDAL ,DJDB

5 DIDH ,DIDK ,DJDH ,DJDK

6 QNEXT ,DQDGNX DNEXT ,DDDXNX

7 XSQR ,RECIPX

Figure 4.28 SPZONB in Original GTDS
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In this common area, the var;ables XJRAN, V, D, Q, CKH, SKH, CAB, SAB,

GENCOS, and GENSIN all have sizes dependent on the degree and order of the gravity

field model. These variables are defined in the following table.

Table 4.11 SPZONB Variables

Variable Definition

XJRAN J (n) * -- for n = 2, 3, ... , nend

V V(I-1,I-I) FOR I=l,...,NMAX

D D(I,I-1) FOR I-=,...,NMAX

Q Q(I-1,I-1) FOR I=1,...,NMAX

CKH RE((K+J*H)('- 2)) FOR I=2,... ,NMAX

SKH IM ((K+J*"-I)(-2) FOR I=2,...,NMAX

CAB RE ((ALPHA+J*BETA)(- 2)) FOR 1=2,...,NMAX

SAB IM ((ALPHA+J*BETA)(I- 2)) FOR I=2,...NMAX

GENCOS Coefficient of COS(K*L) term in SPG

GENSIN Coefficient of SIN(K*L) term in SPG

These variables were defined in the following general way in SPZONB.CMN:

DIMENSION XJRAN (ZONPOT)
DIMENSION V (ZONPOT+1)
DIMENSION D (ZONPOT+1)
DIMENSION Q (ZONPOT+I)

DIMENSION CKH (ZONPOT+2)
DIMENSION SKH (ZONPOT+2) (4.37)
DIMENSION CAB (ZONPOT+2)
DIMENSION SAB (ZONPOT+2)
DIMENSION GENCOS (2*ZONPOT- 1)
DIMENSION GENSIN (2*ZONPOT- 1)
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where ZONPOT is another generic parameter representing the size of the gravity field

model.

The link map indicated that the following routines needed to include SPZONB:

CONSTS .FOR

ECSUM1.FOR

ECSUM2.FOR

ECSUM3.FOR

EVESM 1 FOR

EVESM2.FOR

EVHRMI1.FOR

EVHRM2.FOR

FNSTEP.FOR

FUNINT.FOR

GHPOLY.FOR

HRMSM 1 FOR

HRMSM-2.FOR

HRMSM3.FOR

UPOLY.FOR

ODESM 1 FOR

ODESM2.FOR

SNGESM.FOR

SPZONL.FOR

TERM.FOR

ZONGEN.FOR
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ZONSPC.FOR

ZONVAR.FOR

4.3.3.9 TESS.CMN

TESS is yet another example of a common area which was entireiy converted to an include

file and associated block data. This common area was tuilt to store variables which fall

under the routines SPTESS, PTESRS, and RESPRT. SPTESS and lfESRS have been

described previously. Routine RESPRT provides an SST tesseral resonant solve-for

option [49]. Table 4.12 describes the variables in this common area with sizes dependent

on the limits of the gra-ity field model:

Table 4.12 TESS Variables

Variable Definition

Hl'3 Hansen coefficient kernel, quadrant I and 3

P13 Partial derivative of Hansen coefficient kernel with respect to the

eccentricity squared, quadrant 1 and 3

H24 Hansen ,oefficient kernel, quadrant 2 and 4

P24 Partial derivative of Hansen coefficient kernel with respect to the

eccentricity squared, quadrant 2 and 4

These variables were dimensioned in the following, general way in TESS.CMN:

DIMENSION H13 (NUMCS+2)

DIMENSION P13 (NUMCS+2)
DIMENSION 24 (NUMCS+2)4.38)
DIMENSION P24 (NUMCS+2)
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where NUMCS is another generic parameter representing the size of the gravity field

model.

The link map indicated that the following routines needed to include TESS:

ACMRES.FOR

ACMTES.FOR

ASMPRT.FOR

ASMRES.FOR

ASMTES.FOR

EIRES.FOR

EITESS.FOR

HSEN.FOR

HSMEXC.FOR

HSMPRT.FOR

HSMRES.FOR

HSMTES.FOR

INTES.FOR

INTPRT.FOR

INTRES.FOR

PTESRS.FOR

RESPRT.FOR

RSMEXC.FOR

RSMINT.FOR

SPTESS.FOR
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4.3.3.10 TSRES.CMN

TSRES is the last common area that was converted to an include file and an associated

block data. This common area contains the following three arrays with sizes dependent on

me degree and order of the gravity field model:

Table 4.13 TSRES Variables

Variable Definition

JRES Array to indicate resonant indices

MRES Array to indicate resonant orders

NRES Array to indicate resonant degrees

These arrays were. dimensioned in the following way in TSRES.CMN:

DIMENSION JRES (GRAVNO)

DIMENSION MRES (GRAVNO) (4.39)
DIMENSION NRES (((1+GRAVNO)*GRAVNO)/ 2)

where GRAVNO is another generic parameter representing the size of the gravity field

model. It should be noted that NRES is sized so that the software could support

geosynchronous cases in which every harmonic is potentially resonant--a scenario which

is, more than likely, not practical.

The link map indicated that the following routines needed to include TSRES:

ANAVR.FOR
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ANRES.FOR

AVRINT.FOR

SELRES.FOR

SETAVR.FOR

SPANAL.FOR

VARANL.FOR

4.3.4 Summary of Modifications to GTDS

Sections 4.3.2 and 4.3.3 described the various modifications that were made to GTDS.

This section will list and describe every routine that was modified. In addition, a listing

and description of all new routines will be given.

Table 4.14 Summary of Modifications to Original GTDS

Routine Change Description

ACCUM.FOR *Included MDWRK

ACMRES.FOR -Included TESS

ACMTES.FOR *Included TESS

ANAVR.FOR *Included TSRES

* Added GRAVNO and NUMNRES to call to PTESRS.FOR

ANHARM.FOR -Included HRMCF

* Included ANAVI

ANLHDR.FOR -Included HRMCF

-Made potential-related indices general

ANLWRT.FOR I Included SPREAL
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ANRES.FOR -Included TSRES

ANTHIR.FOR -Included ANAVI

ASMBLY.FOR -Removed erroneous reference to CS, SIRE, and SICX

(comment line fix)

-Included MDWRK

AUXTRN.FOR *Included ANAVi

-Made potential-related indices general

AVRINT.FOR -Included HRMCF

-Included TSRES

*Made potential-related indices general

BROLYD.FOR *Included HRMCF

BROUWR.FOR -Included HRMCF

CHETO.FOR *Included HRMCF

CMPMEL.FOR *Included HRMCF

CMPOEL.FOR *Included HRMCF

COMORB.FOR -Included HRMCF

CONSTS.FOR -Included SPZONB

* Updated DIMENSION statements with "a' logic

COREST.FOR *Included HRMCF

-Made potential-related loop indices general

DBOUND.FOR *Included ANAVl

DCBUG.FOR -Included HRMCF

DRAGJ2.FOR *Included HRMCF

ECSUM1.FOR *Included SPZONB

ECSUM2.FOR -Included SPZONB
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ECSUM3.FOR *Included SPZONB

EILOAD.FOR *Included GRAVITY

EIPOLY.FOR -Removed erroneous reference to CS (comment line fix)

* Included MDWRK

EIRES.FOR *Included TESS

* Included GRAVITY

EITESS.FOR -Included TESS

EITRY.FOR *Included GRAVITY

ELEMGN.FOR *Included HRMCF

EPHEM.FOR *Included HRMCF

-Made potential-related loop indices general

EQINT.FOR -Included HRMCF

EVESM1.FOR -Included SPZONB

EVESM2.FOR -Included SPZONB

EVHRMI.FOR *Included SPZONB

EVHRM2.FOR -Included SPZONB

FILESBD.FOR *Assigned FORTRAN reference numbers for new earth and

lunar permanent gravity files (FRN47 and FRN48)

FINIT.FOR *Included PTSDAT

FNEWMI.FOR *Included PTSDAT

FNEWM2.FOR *Included PTSDAT

FNSTEP.FOR *Included SPZONB
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FRCBD.FOR -Dummied out old locations for CS, SINLAM, and COSLAM

arrays

*Updated hardwired values for NDEPF, NOEPF, NDMPF, and

NOMPF

FSUM.FOR *Included AVEPOT

FUNINT.FOR -Included SPZONB

FZERO.FOR *Included PTSDAT

GHPOLY.FOR *Included SPZONB

HARM.FOR *Included HRMCF

*Included CSBLNK

-Updated READ logic

*Made potential-related loop indices general

HRMSM1.FOR *Included SPZONB

HRMSM2.FOR *Included SPZONB

HRMSM3.FOR *Included SPZONB

HSEN.FOR *Included TESS

*Included NUKES

*Renamed local variable FACTOR to avoid conflict with

TESS

HSMEXC.FOR *Included TESS

HSMMD.FOR -Included HRMCF

-Made potential-related loop indices general

-Included MDWRK
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HSMPRT.FOR *Included TESS

-Removed erroneous reference to CS (comment line fix)

-Removed erroneous reference to NRES (comment line fix)

HSMRES.FOR *Included TESS

-Included HRMCF

*Made potential-related indices general

*Added NUMNRES to argument call list (to DIMENSION NRES)

HSMTES.FOR -Included TESS

-Included HRMCF

&Made potential-related indices general

HSUM.FOR -Included HRMCF

* Included AVEPOT

HWIRE.FOR *Included SPREAL

-Updated comment lines to be consistent with increased

gravity field capability

IJPOLY.FOR *Included SPZONB

INREAD.FOR *Included NUKES

INTES.FOR *Included TESS

INTHSM.FOR *Included MDWRK

* Removed erroneous reference to FRC (comment line fix)

INTOGV.FOR -Included HRMCF

:NTPRT.FOR *Included TESS

INTRES.FOR *Included TESS

INTS.FOR *Included MDWRK

_ Removed erroneous reference to CS (comment line fix)
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J2PART.FOR *Included HRMCF

J2SQR.FOR *Included HRMCF

KFHIST.FOR *Included SPREAL

MEANOSC.FOR -Included SPREAL

MUKON.FOR *Included HRMCF

NKREAD.FOR -Included NUKES

NUKESBD.FOR -Modified existing code to be compatible with NUKES.CMN

ODESM1.FOR *Included SPZONB

ODESM2.FOR *Included SPZONB

OGBUG.FOR 'Included HRMCF

-Included GEOVAR

-Included LEGPOL

OSMIOR.FOR *Removed erroneous reference to CS (comment line fix)

OSCMEAN.FOR 'Included SPREAL

OSMEAN.FOR *Included HRMCF

OSMKEP.FOR -Included HRMCF

OUTPPC.FOR -Included HRMCF

*Included CSBLNK

*Added pointer to FRN47 and FRN48

'Updated READ logic

'Added CLOSE capability for FRN47 and FRN48

* Made potential-related indices general

PASSBD.FOR *Dummied out old locations for PMN and TPSIM arrays
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PCWF.FOR -Included HRMCF

*Added pointer to FRN47 and FRN48

-Updated harmonic coefficient READ logic

*Added CLOSE capability for FRN47 and FRN48

-Made potential-related indices general

PDNEWM.FOR *Included PTSDAT

PSET.FOR -Included HRMCF

-Made potential-related indices general

PTESRS.FOR *Included TESS

*Included GRAVITY

-Made potential-related indices general

*Removed erroneous reference to FRC (comment line fix)

*Added GRAVNO and NUMNRES to argument call list

* Added NUMNRES to call to RSMEXC.FOR

PTESS.FOR -Included HRMCF

-Made potential-related indices general

RBOUND.FOR ,Included ANAV1

nMade potential-related indices general

RESNJV.FOR *Included HRMCF

RESPAR.FOR *Included HRMCF

*Included GEOVAR

*Included LEGPOL

-Made potential-related indices general
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RESPRT.FOR *Included TESS

*Included GRAVITY

*Added GRAVNO and NUMNRES to argument call list

RESPV.FOR *Included HRMCF

*Included GEOVAR

-Included LEGPOL

-Made potential-related indices general

RPTEST.FOR -Included HRMCF

RSMEXC.FOR -Included TESS

'Added NUMNRES to argument call list (to DIMENSION NRES)

-Added NUMNRES to call to HSMRES.FOR

RSMINT.FOR 'Included TESS

SECULR.FOR *Included HRMCF

SECUPD.FOR *Included HRMCF

*Updated harmonic coefficient READ logic

-Made potential-related indices general

SELRES.FOR -Included TSRES

-Removed erroneous reference to CS (comment line fix)

-Made potential-related indices general

SETAVR.FOR -Included TSRES

'Updated hardwired limit for degree and order

-Made potential-related indices general

SETDAF.FOR 'Added capability to OPEN FRN47 and FRN48
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SETOG1.FOR *Included HRMCF

*Included CSBLNK

*Included LUMPCS

*Added pointer to FRN47 and FRN48

*Updated harmonic coefficient READ logic

-Made potential-related indices general

SETOG2.FOR *Included HRMCF

'Included CSBLNK

-Added pointer to FRN47 and FRN48

'Updated harmonic coefficient READ logic

'Made potential-related indices general

SETORB.FOR 'Included HRMCF

*Included CSBLNK

'Updated hardwired limit for MAXDEGEQ and MAXORDEQ

'Made potential-related indices general

SETSPG.FOR 'Included SPREAL

SHORTP.FOR *Included HRMCF

SKFPRT.FOR 'Included SPREAL

SNGESM.FOR 'Included SPZONB

SOLTAB.FOR *Included HRMCF

-Made potential-related indices general

SPANAL.FOR *Included TSRES

,Included SPREAL

'Added GRAVNO to call to SP7ESS.FOR

-Added TFDPL2 to call to SPTHIR.FOR
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SPART.FOR *Included HRMCF

*Included GEOVAR

•Included LEGPOL

-Made potential-related indices general

SPARTV.FOR *Included HRMCF

-Included GEOVAR

*Included LEGPOL

*Included LUMPCS

* Made potential-related indices general

SPCOEF.FOR 'Included SPREAL

SPCOTO.FOR -Included SPREAL

SPDIFF.FOR -Included SPREAL

SPGENR.FOR *Included SPREAL

SPINIT.FOR *Included SPREAL

SPINTGBD.FOR *Updated comments concerning number of short-periodic

coefficients

SPINTP.FOR -Included SPREAL

SPJ2MD.FOR -Included SPREAL

SPJ2PR.FOR *Included HRMCF

SPJ2SQ.FOR -Included HRMCF

SPMDLY.FOR -Included MDWRK

* Removed erroneous reference to FRC (comment line fix)

SPMOVE.FOR IIncluded SPREAL
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SPNUM.FOR *Included SPREAL

*Rerimed local variable XLAMDA to XXLAMDA to avoid

conflict with SPREAL

SPNUM2.FOR *Included SPREAL

-Renamed local variable XLAMDA to XXLAMDA to avoid

conflict with SPREAL

SPORB.FOR -Included SPREAL

SPORBP.FOR *Included SPREAL

SPSKF.FOR *Included SPREAL

SPTESS.FOR *Included TESS

-Included GRAVITY

-Added GRAVNO to argument call list

SPTHIR.FOR *Added TFDPL2 to argument call list

S*Dimensioned short-periodic coefficients with TFDPL2

SPZONL.FOR -Included HRMCF

* Included SPZONB

TERM.FOR *Included SPZONB

THIVAR.FOR *Updated DIMENSION statements with "*" logic

TSROUT.FOR *Included HRMCF

-Made potential-related indices general

TSUM.FOR *Included AVEPOT

TSUMN.FOR *Included HRMCF

*Included PTSDAT

-Made potential-related indices general
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VARANL.FOR *Included TSRES

* Added GRAVNO and NUMNRES to call to RESPRT.FOR

VRSPFD.FOR *Included SPREAL

VNMEAN.FOR -Included HRMCF

ZONGEN.FOR *Included SPZONB

ZONSPC.FOR *Included SPZONB

ZONVAR.FOR -Updated DIMENSION statements with "*" logic

In all, a total of 144 routines and approximately 2900 lines of code were modified in

support of the work for this thesis.

Table 4.15 Summary of New Routines Added to GTDS

Routine Lines Description

HRMCF.CMN 40 -Establishes common area for harmonic

coefficients

HRMCF.FOR 2719 -Stores the harmonic coefficients

LEGPOL.CMN 41 -Establishes common area for Legendre and

associated Legendre polynomials

LEGPOL.FOR 18 *Stores the Legendre and associated Legendre

polynomials

GEOVAR.CMN 42 -Establishes common area for SINLAM, COSLAM,

and TPSIM arrays

GEOVAR.FOR 21 "Stores the SINLAM, COSLAM, and TPSIM arrays
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LUMPCS.CMN 40 -Establishes common area for DELCS array

LUMPCS.FOR 20 -Stores the DELCS array

CSBLNK.CMN 46 *Establishes common area for CSSTOR, ICSTEM,

and PTNTL arrays

CSBLNK.FOR 19 -Stores the CSSTOR, ICSTEM, and PTNTL arrays

NUKES.CMN 43 -Establishes common area for the Newcomb

operators

ANAVl.CMN 48 -Establishes common area for FACT, EPWR,

HAFPWR, XPWR, SINPWR, and ONEGPW arrays

ANAV1.FOR 12 -Stores the FACT, EPWR, HAFPWR, XPWR, SINPWR,

and ONEGPW arrays

AVEPOT.CMN 44 -Establishes common area for XJRAN, ARN, QNM,

and GAMMAN arrays

AVEPOT.FOR 10 Stores the XJRAN, ARN, QNM, and GAMMAN arrays

GRAVITY.CMN 32 -Establishes common area for FIELDSIZE,

TWOFS1, and TWOFS2 parameters

MDWRK.CMN 350 *Establishes common area for all variables in

this entirely converted version of MDWRK

MDWRK.FOR 19 -Stores all variables used in this entirely

_converted version of MDWRK

PTSDAT.CMN 44 -Establishes common area for GLA_ LA ',

GLASTX, HLASTX, and DPDDX array

PTSDAT.FOR 10 *Stores the GLAST, HLAST, GLASTX, HiLASTX, and

_DPDDX arrays
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SPREAL.CMN 336 -Establishes common area for all variables in

this entirely converted version of SPREAL

SPREAL.FOR 27 -Stores all variables used in this entirely

converted version of SPREAL

SPZONB.CMN 222 -Establishes common area for all variables in

this entirely converted version of SPZONB

SPZONB.FOR 10 -Stores all variables used in this entirely

converted version of SPZONB

TESS.CMN 603 -Establishes common area for all variables in

this entirely converted version of TESS

TESS.FOR 32 -Stores all variables used in this entirely

converted version of TESS

TSRES.CMN 57 -Establishes common area for all variables in

this entirely converted version of TSRES

TSRES.FOR 53 -Stores all variables used in this entirely

_converted version of TSRES

TOTAL NEW LINES OF CODE: 4990

In all, a total of 28 new routines encompassing 4990 lines of code were added to GTDS.

This table indicates that all the new routines were include files or associated block datas

which store arrays and variables related to the gravity modeling capability within GTDS. it

should be noted that the new executable image of GTDS (16,060 blocks) is 4845 blocks

larger than executable image that existed before any of the modifications to support the

work in this thesis were made (11,215 blocks).
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If it was desired to increase the size of the gravity field model beyond the current standard

of 50x50, the user would simply need to make the following modifications:

Table 4.16 Summary of Actions to Increase Limits of Gravity Field Model
Beyond 50x50

Routine Action

HRMCF.CMN -Update value of NUMCOF to desired field size

HRMCF.FOR -Update lay-out of default harmonic coefficients

LEGPOL.CMN -Update value of GEOCS to desired field size

GEOVAR.CMN -Update value of GEONUM to desired field size

ANAVI.CMN -Update value of POTNUM to desired field size

MDWRK.CMN -Update value of NUMPOT to desired field size

TSRES.CMN -Update value of GRAVNO to desired field size

TESS.CMN -Update value of NUMCS to desired field size

LUMPCS.CMN -Update value of LUMPNO to desired field size

CSBLNK.CMN -Update value of CSBNUM to desired field size

AVEPOT.CMN -Update value of DEGORD to desired field size

PTSDAT.CMN -Update value of ORDDEG to desired field size

SPZONB.CMN -Update value of ZONPOT to desired field size

SPREAL.CMN *Update value of FLDDIM to desired field size

GRAVITY.CMN -Update value of FIELDSIZE to desired field size
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FRCBD.FOR *Update value of NDEPF to desired field size

-Update value of NOEPF to desired field size

-Update value of NDMPF to desired field size

_ Update value of NOMPF to desired field size

NUKES.CMN -Update value of NNUKE to reflect the number of Newcomb

operators built by WRITE_NUKES.FOR (refer to Appendix E)

SETDAF.FOR -Open new FRN files corresponding to appropriate permanent

earth/lunar potential files

DANWHARM.FOR -Update -value of NUMCOF to desired field size

-Build new permanent earth/lunar potential files

If so desired, the user can attempt to INCLUDE GRAVITY.CMN into each of the other

common areas containing a generic parameter representing the limits of the gravity field

model. Then, the generic parameter can be equated or equivalenced to the variable

FIELDSIZE, which lives in GRAVITY.CMN. This modification would provide for a

single modification point concerning the generic parameters representing the limits of the

gravity field model.

4.3.5 Modifications to "Original" GTDS

During testing of the modified version of GTDS, it was discovered that a discrepancy

existed for a Semianalytic run between un-modified and modified versions of GTDS for the

limiting 21x21 field case. Using the DEBUG capability of the VAX, it was discovered that

the SIRE and SICX arrays used in the routines EILOAD, EIRES, EITESS, EITRY,

PTESRS, RESPRT, and SPTESS were dimensioned incorrectly in the un-modified
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version of GTDS. These arrays, which have definitions similar to those for the SIRE and

SICX arrays which are stored in the common area MDWRK, were dimensioned in the

following way in original GTDS:

DIMENSION SIRE (43)
DIMENSION SICX (43) (4.40)

For correct implementation, these arrays should be dimensioned slightly larger:

DIMENSION SIRE (44)

DIMENSION SICX (44) (4.41)

Testing shows that this modification provides exact agreement between original and

modified GTDS. It should be noted that the impact of this bug is small in nature; the slight

change in the aforementioned DIMENSION statements is a trivial task. The next chapter of

this thesis will describe the testing of GTDS in more detail.
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Chapter 5

50X50 Gravity Field Model Results

5.1 Chapter Introduction

Chapter 4 described in detail the various modifications that were made to GTDS as part of

the work for this thesis. In summary, 144 routines were modified and 28 new routines

were added to the previously existing version of GTDS in order to support the 50x50 class

gravity field models (for the remainder of this chapter, the version of GTDS which existed

prior to the work for this thesis will be referred to as "old" GTDS, while the version

containing all of the work accomplished as part of this thesis will be referred to as "new"

GTDS). Since GTDS was significantly modified as part of this thesis, it was necessary to

develop a logical validation philosophy to ensure that (1) none of the capabilities of old

GTDS were disabled and (2) that the new capabilities added to GTDS were implemented

correctly. This Chapter describes the validation philosophy that was implemented for the

Cowell and Semianalytic orbit generators.

Chapter 5 is organized in the following fashion:

* Section 5.2 Validation of Permanent File Report Function.

* Section 5.3 Unit testing of Cowell Accelerations

* Section 5.4 Testing of the Cowell Orbit Generator

* Section 5.5 Testing of Cowell Differential Correction

* Section 5.6 Testing of the Semianalytic Orbit Generator
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Section 5.7 Impact of 50x50 Gravity Models in Orbit Determination

The first step in the validation process was to check that the Permanent File Report

Function in GTDS was working properly. This check ensured that correct values for the

harmonic coefficients were being obtained. Then, Cowell accelerations computed by new

GTDS were checked against values obtained from the standalone routine described in

Chapter 3. After successful unit testing of the Cowell accelerations, the step to full-up

testing of Cowell integrations was taken. First, 21x21 class gravity field models were

compared between old and new GTDS. Then, a gradual increase in field size from 21 x21

to 50x50 was taken to check consistency of results. Cowell 50x50 results from new

GTDS were compared against results obtained from TRACE [54], a separate orbit

determination program [59,60]. In addition, a 50x50 Cowell Differential Correction run

was made to test the Differential Correction Program and the use of the variational

equations. Validated Cowell results were used, in turn, to validate Semianalytic runs.

Once it was determined that both the Cowell and Semianalytic orbit generators were

working successfully, the impact of 50 x 50 gravity field models in orbit determination was

ana!yzed. Specifically, resonant effects captured by 50x50 class models which had been

neglected by 21x21 class models were studied.

On the BIGSIM VAX 8820, the following directory system was created to support the

testing described in this Chapter:
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DJF1 230I

Root
Director

[.changes]

[.changescom]

L[.report)] .oel -o][dl [cmae
ý IILL -_I I I

Figure 5.1 Directory System for Testing

This directory system augments the one given in Figure 4.11. These directories were used

to store test-related files for the validation of the Permanent File Report Generation

Program, Cowell orbit generator, Semianalytic orbit generator, Differential Correction

Program, and the Ephemeris Comparison Program.

5.2 Validation of Report Function

The Permanent File Report Function was used to ensure that GTDS was obtaining the

correct values for the harmonic coefficients from FRN8 and FRN47. The following input

deck was used in this test:
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CONTROL FILERPT
PFROPT
EPOTRPT 2 0
END
FIN

Figure 5.2 Sample Input Deck to Validate Report Function
THESIS REPORT.GTDS

The output which results from this deck contains a full report on all the models in the

permanent earth potential field files (FRN 8 and FRN47). This report consists of (1) the

name and model number of the various models, (2) the value used for the gravitational

parameter for each of the models, (3) the value used for the radius of the earth for each of

the models, and (4) listings of the harmonic coefficients for each of the models. Since the

output which corresponds to this input deck is rather large, it is not included here. It can,

however, be referenced under the filename

THESISREPORT.OUTPUT (5.1)

in the directory

[DJF1230.CHANGES.CHANGESCOM.REPORT] (5.2)

It should be noted that this process provided a second check that DANWHARM.FOR was

functioning properly (the output text file described in Section 4.3.1 was the first).
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5.3 Unit Testing of Cowell Accelerations

The purpose of the testing in Chapter 3 was to determine the stability of the Legendre and

associated Legendre polynomials and to compute Cowell accelerations with a GTDS

Emulation routine. A GTDS emulation was used rather than actual GTDS to avoid (1)

making numerous modifications to GTDS to support the 50x50 class fields in an un-

normalized sense, (2) finding that the polynomials are unstable, and (3) having to re-

modify GTDS to support normalized expressions. Normalized recursions for the

polynomials given by Lundberg and Schutz [36] were used in a truth model. The results

indicated that the Cowell accelerations obtained from un-normalized expressions in the

GTDS emulation produced favorable results in the VAX and UNIX environments (refer to

Chapter 3).

The first step in testing the Cowell orbit generator in new GTDS was to compare results for

Cowell accelerations between the actual GTDS code and the truth model. The LANDSAT

4 initial conditions were used for test purposes since (1) many benchmark test cases have

been generated from these initial conditions and (2) the orbit is similar to that of

RADARSAT, the satellite for which this work was intended:

CONTROL EPHEM LNDSAT-4 8201201
EPOCH 820224.0 0.0
ELEMENT1 1 2 1 7077.8 0.0011 98.2
ELEMENT2 158.1 89.4 176.0
OUTPUT 1 2 1 820227.0 0.0 43200.
ORBTYPE 2 1 1 a.0
OGOPT
MAXDEGEQ 1 X.
MAXORDEQ 1 y.
POTFIELD 1 z
END
FIN

Figure 5.3 Standard Cowell Input Deck Format
LANDSAT 4
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In this input deck, several items of interest can be noted. The EPOCH card establishes an

epoch date of 24 February 1982 (0.0 hours). The first integer field in the ELEMENTI card

indicates that the mean earth equator and equinox of 1950.0 is the input system orientation.

The second integer field indicates a Keplerian input coordinate system. The third integer

field indicates that the earth is the input reference body. The actual elements listed on the

ELEMENTX cards represent semimajor axis, eccentricity, inclination (degrees), longitude

of ascending node (degrees), argument of perigee (degrees), and mean anomaly (degrees),

respectively. The first integer field on the OUTPUT card indicates an output coordinate

system of mean earth equator and equinox of 1950.0. The second integer ficild represents a

Cartesian, Keplerian, and spherical output reference system. Again, the third integer field

represents the earth as the output reference body. The first real field provides a date of 27

February 1982 (0.0 hours) as the end of the print arc. The third real field specifies the print

interval on the output report (in seconds). As described in Section 4.2.4, the value for

integration step size (a.0), maximum degree (x), maximum order (y), and gravity model

number (z) depends on the specific test case. The set-up of this card implies that only

central and third body gravitational perturbations are considered (by default, third body

effects are turned on in GTDS). It should be noted that the input conditions given in Figure

5.3 hold for every Cowell run (unless otherwise stated).

The Cowell accelerations for a GEM10B 21x21 gravity field model, a capability that old

GTDS was configured to handle, are given first:

Table 5.1 Cowell Acceleration Validation
New GTDS vs. Lundberg Truth (21x21 GEMlOB)

New GTDS Value Lundberg Truth Value

axb 8.653210294968294E-7 8.653210294968288481236474144803601E-7

ayb -6.515584998975128E-6 -6.515584998975091510625442206439533E-6

azib -1.931032474628621E-5 -1.931032474628616528394963271551205E-5
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where the GEM1OB values for the gravitational parameter and radius of the earth are

398600.44 km3/sec 2 and 6378.138 km, respectively.

Cowell accelerations for GEMT3 21x21, 25x25, 30x30, and 50x50 are given in Table 5.2

through Table 5.5:

Table 5.2 Cowell Acceleration Validation
New GTDS vs. Lundberg Truth (21x21 GEMT3)

New GTDS Value Lundberg Truth Value

axb 8.713973515294979E-007 8.713973515294979223157917187605221E-0007

ayb -6.519983675472165E-006 -6.519983675472133076020419311681219E-0006

azb -1.931383457156898E-005 -1.931383457156895243203575004719676E-0005

Table 5.3 Cowell Acceleration Validation
New GTDS vs. Lundberg Truth (25x25 GEMT3)

New GTDS Value Lundberg Truth Value

axb 8.688640158899119E-007 8.688640158899117181705904414281339E-0007

ayb -6.519810117658732E-006 -6.519810117658698995672096587377993E-0006

azb -1.931666723569801E-005 -1.931666723569798341013986223813520E-0005

Table 5.4 Cowell Acceleration Validation
New GTDS vs. Lundberg Truth (30x30 GEMT3)

New GTDS Value Lundberg Truth Value

axb 8.687362166403940E-007 8.687362166403939787963327971153236E-0007

ayb -6.519188447356782E-006 -6.519188447356751035844360468187382E-0006

azb -1.931896767331529E-005 -1.931896767331525869055067895284881E-0005
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Table 5.5 Cowell Acceleration Validation
New GTDS vs. Lundberg Truth (50x50 GEMT3)

New GTDS Value Lundberg Truth Value

axb 8.683465146150195E-007 8.683465146150193614319424992827359E-0007

ayb -6.519678538340111E-006 -6.519678538340080232354478851469384E-0006

azb, -1.931876804829167E-005 -1.93!876804829163932564593223959640E-0005

The values listed in Table 5.2 through Table 5.5 correspond to a single point along the

Cowell integration. The specifics of this point are given in Table 3.2 (these specifics

correspond to the first point along the Cowell integration from the inputs given in Figure

5.3). The results for other points along the integration are in accordance with those given

here and, for the sake of brevity are not given. GEMT3 values of 398600.436 km 3 /sec 2

and 6378.137 krn hold for the gravitational parameter and radius of the earth, respectively.

In addition, 60 second step-sizes were used for test cases with gravity field models sized

less than or equal to the 21x21 standard; 10 second step-sizes were used for test cases with

gravity field models larger than the 21x21 standard.

The results given in this section show that the Cowell accelerations produced by new

GTDS possessed tight agreement with the truth model. For this reason, they were

considered acceptable, and the step to full-up testing of the Cowell orbit generator was

made.
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5.4 Testing of the Cowell Orbit Generator

With successful unit testing of the Cowell accelerations completed, the next step was to

actually perform a Cowell integration over a desired arc and analyze conditions at the end of

the arc. For 21x21 class models, comparisons between old and new GTDS could be

made. For testing beyond the 21x21 capability of old GTDS, TRACE was used for

comparison purposes. As with the Cowell acceleration unit testing, a standalone routine

could have been built to simulate the Cowell Orbit Generator. It was determined, however,

that using TRACE for comparison purposes would provide a much more rigorous test of

the Cowell orbit generator. For this reason, a standalone Cowell orbit generator was not

built for test purposes.

The first test case chosen for the full-up Cowell integration was a 21x21 GEM 10B run.

Since old GTDS was configured to handle a run of this type (the GEM0 OB model is stored

on FRN8), this run would essentially prove that nothing was broken as a result of the work

in this thesis. The results of a three day arc corresponding to the initial conditions given in

Figure 5.3 are listed in Table 5.6:

Table 5.6 Cowell Orbit Generator Validation
Old GTDS vs. New GTDS (21x21 GEMlOB)

State Old GTDS New GTDS

X 0.3873178650543644D+04 0.3873178650543644D+04

Y -0.4305621520174543D+03 -0.4305621520174543D+03

Z 0.5925115219741317D+04 0.5925115219741317D+04
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Next, a 21x21 GEMT3 run was made; it should be noted that a 21x21 version of the

GEMT3 gravity model was built using the DANWHARM utility. The file is in the

following directory

[DJF1230.RUNGTDS] (5.3)

and is named

GEMT3_21BY21.DAT (5.4)

This file can be assigned as old GTDS's permanent earth potential file (FRN8). The results

of a three-day arc corresponding to the initial conditions given in Figure 5.3 are given in

Table 5.7:

Table 5.7 Cowell Orbit Generator Validation
Old GTDS vs. New GTDS (21x21 GEMT3)

State Old GTDS New GTDS

X 0.3873119522963696D+04 0.3873119522963696D+04

Y -0.4305267000347166D+03 -0.4305267000347166D+03

Z 0.5925163676253139D+04 0.5925163676253139D+04

The test which produced the results in Table 5.7 differed from the one which produced the

results in Table 5.6 in that the test for 5.7 utilized logic ass .ciated with FRN47; the test for

5.6 used logic associated with FRN8--logic which old GTDS was configured to handle.

Again, it should be noted that 60 second step-sizes were used in these test cases with

gravity field models sized less than or equal to the 21 x21 standard.

220



Testing for fields beyond the 21x21 capability could not use old GTDS for comparison

purposes. TRACE, Aerospace Corporation's orbit determination program, was used for

fields larger than 21x21. The input decks used for the GTDSiTRACE comparisons were

of the following form:

CONTROL DATAMGT RADARSAT 8202230

OGOPT
POTFIELD 1 13
END
FIN
CONTROL EPHEM RADARSAT 8202230
ELEMENT1 1 2 1 7077.8 0.0011 98.2
ELEMENT2 158.1 89.4 176.0
EPOCH 820224.0 000000.0
OUTPUT 1 2 1 82xxxx.0 000000.0 120.0
ORBTYPE 2 1 1 10.0
OGOPT
NCBODY 1
MAXDEGEQ 1 50.0
MAXORDEQ 1 50.0
GMCON 1 398600.5
OUTOPT 2 2 1 820224000000.0 82xxxxOOOOOO.0
END
FIN

Figure 5.4 GTDS/TRACE Input Deck Format
GEMT3 Harmonic Coefficients

where the time periods of integration and for output to an ORB 1 file are case dependent.

The format of this input deck is similar to that of the deck given in Figure 5.3. There are,

however, some differences in this deck which arc of interest. These differences, which

stem from attempts to align results from two distinct orbit determination programs, are

described next:

(1) NCBODY keyword card. The use of this card as depicted in Figure 5.4 turns off

the third-body (lunar-solar) effects which are automatically included by default in GTDS if

this card is not present.
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(2) GMCON keyword card. This card provides for an overwrite of the value for the

gravitational parameter stored on the permanent potential file(s).

Other non-input deck related issues which were addressed in order to compare GTDS with

TRACE are as follows:

(1) A time standard of UTI=UTC. This standard, which required modification of the

time difference polynomials which govern the transformation between the time systems

A.1, UTC, and UTI, was implemented in the following manner in the GTDS time

conversion file:

A. 1 - UTC = 20.0 sec

A.1 - UTI = 20.0 sec (5.5)

This definition was consistent with what was used at Aerospace to produce results with

TRACE [54]. It should be noted that the time standards used for this test did not include

polar motion corrections. The GTDS Math Specification [261 details the various time

systems and the transformation between these systems.

(2) GTDS's Solar/Lunar/Planetary (SLP) Ephemeris File contains ephemerides of the

sun, moon, and planets in a mean reference frame on a dynamical (ephemeris) time base

[26]. Since this file must correspond to the time standards described in (1), a new SLP file

had to be constructed to support the GTDS/TRACE comparison testing. TRAMP

[56,57,58] was used to build this new SLP file.

The radial, cross-track, and along-track differences between GTDS and TRACE are given

in Figure 5.5 through Figure 5.7 for eleven day arcs (note that the time points are not

equally spaced). These graphs depict extremely tight agreement between the two orbit
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determination programs. A slight secular run-off can be noticed in the cross-track plot. It

is believed that this drift can be accredited to either (1) subtle coordinate systems

differences or (2) integration scheme differences. It is also believed that the high frequency

variations result from a loss of a digit of accuracy in time stamps in TRACE. Further

results stemming from comparisons between GTDS and TRACE are expected in future

work [24].
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Figure 5.7 Along-Track Error Between TRACE and GTDS

11 Day Arc, Cowell 50x50 GEMT3

5.5 Testing of Cowell Differential Correction

Once it was determined that the Cowell orbit generator was functioning properly, a Cowell

Differential Correction run was made. This test (1) constructed a truth ORB I file from a

five day Cowell integration, (2) used the Differential Correction Program to solve for the

initial state from a set of elements slightly perturbed from the ones used to perform the

Cowell integration in step (1), (3) constructed a second ORB I file from a five day Cowell

integration using the "solved-for" state vector from step (2), and (4) compared the two

ORBI files. Executing GTDS in this manner tests the use of the Cowell variational

equations in the Differential Correction Program. The input deck used to perform the
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Differential Correction, second Cowell integration, and Compare Program is given in

Figure 5.8:

CONTROL DC RADARSAT 8202230
ELEMENT1 1 2 1 7173.48434 0.820904343990D-03 98.70378044247322
ELEMENT2 120.5944241036631 87.9862755708162 250.16721
EPOCH 820102.0 000240.6

ORBTYPE 2 1 1 10.
OBSINPUT 9 820102 000340.6 820105 000340.6
DMOPT
OBSDEV 21 22 23 10. 10. 10.
OBSDEV 24 25 26 1. 1. 1.
END
OGOPT
DRAG 1 1
ATMOSDEN 1
DRAGPAR 3 0 3.0
SOLRAD 1 1.0
SCPARAM 14.680D-6 2830.000
MAXDEGEQ 1 50.0
MAXORDEQ 1 50.0
POTFIELD 1 13
END
DCOPT
PRINTOUT 1 4
CONVERG 25 6 1.D-4
END
FIN
CONTROL EPHEM OUTPUT RADARSAT 8202230
OUTPUT 1 2 1 820107.0 003241.0 86400.0
ORBTYPE 2 1 1 10.0
OGOPT
DRAG 1 1
ATMOSDEN 1
SOLRAD 1 1
SCPARAM 14.680D-6 2830.000
MAXDEGEQ 1 50.0
MAXORDEQ 1 50.0
POTFIELD 1 13
OUTOPT 21 820102000241.0 820107003241.0 1800.
END
FIN
CONTROL COMPARE RADARSAT 8202230
COMPOPT
CMPEPHEM 1102102 820102000241.0 820105003241.0 30.
CMPPLOT 3 2.
HISTPLOT 1102102 820102000241.0 820105003241.0 1800.
END
FIN
CONTROL COMPARE RADARSAT 8202230
COMPOPT
CMPEPHEM 1102102 820105000241.0 820107003241.0 30.
CMPPLOT 3 2.
HISTPLOT 1102102 820105000241.0 820107003241.0 1800.
END
FIN

Figure 5.8 Standard Cowell Differential Correction Input Deck Format
RADARSAT

226



In this deck, the DRAG and SOLRAD keyword cards indicate that this run included the

effects of atmospheric drag and solar radiation pressure (ATMOSDEN = 1 specifies the

Jacchia-Roberts Density Model). By default, third-body (lunar/solar) effects were also

included. The SCPARAM keyword card provided for a specification of the satellite's

average cross-sectional area (kin2 ) and mass (kg). The values for area and mass specified

in this plot are those of RADARSAT [ 18].

The results of this test are given in Figure 5.9 and 5.10:

POSITION RMS VELOCITY RMS

(km) (km/sec)

RADIAL 1.4442D-10 2.3113D-10
CROSS TRACK 1.9252D-11 6.0083D-14
ALONG TRACK 2.2239D-07 2.2946D-13
TOTAL 2.2239D-07 2.3113D-10

Figure 5.9 50x50 GEMT3 Cowell Differential Correction
First Three Days

POSITION RMS VELOCITY RMS

(km) (km/sec)

RADIAL 1.9173D-10 2.0215D-10
CROSS TRACK 2.2519D-11 3.9828D-14
ALONG TRACK 1.9451D-07 2.1681D-13
TOTAL 1.9451D-07 2.0215D-10

Figure 5.10 50x50 GEMT3 Cowell Differential Correction
Last Two Days

These results indicate that the Cowell Differential Correction Program functions properly

with the default values of the variational equations (degree = 2, order = 0). In other words,

the very small errors are consistent with the fact that the same dynamical model is being

used for both data generation and the filter.
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5.6 Testing of the Semianalytic Orbit Generator

After the Cowell orbit generator and the Cowell Differential Correction process were

validated, the next step was to test the semianalytic orbit generator. The input decks used

for the initial testing of the Semianalytic orbit generator were similar to those given in

Figure 5.3:

CONTROL EPHEM LNDSAT-4 8207201

EPOCH 820224.0 0.0
ELEMENT1 1 6 1 7077.8 0.0011 98.2
ELEMENT2 158.1 89.4 176.0
OUTPUT 1 2 1 820225.0 0.0 3600.
ORBTYPE 5 1 1 a.0 1.0
OGOPT
MAXDEGEQ 1 x.
MAXORDEQ 1 y.
POTFIELD 1 z
END
FIN

Figure 5.11 Standard Semianalytic Input Deck Format
LANDSAT 4

The differences between this deck and the one given in Figure 5.3 correspond to the

differences between the two orbit generators. The second integer field in the ELEMENTI

card indicates an averaged Keplerian input coordinate system. The first integer field in the

ORBTYPE card now reflects a Semianalytic (Variation of Parameters) orbit generator. The

second real field reflects a 4th order Runge Kutta integrator for state propagation. Again,

the value for integration step size (a.0), maximum degree (x), maximum order (y), and

gravity model number (z) depends on the specific test case. The set-up of this card implies

that only central and third body gravitational perturbations are considered (by default, third

body effects are turned on in GTDS). It should be noted that the initial testing for the

Semianalytic orbit generator concentrated on one day arcs.
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For the Cowell input deck, it was stated that the elements specified on the ELEMENTX

cards represent (osculating) Keplerian elements, while the Semianalytic input deck indicates

that the elements on these cards are averaged Keplerian. Even though the elements have a

different meaning, they have the same value. This configuration is not technically correct,

but can be used if physical meaning is of no consequence. It was stated in the introductory

paragraph of this section that input decks of form 5.11 were used in the initial testing of the

Semianalytic orbit generator. This testing corresponds to cases with gravity field models

less than or equal to the 21x21 standard. In these cases, "blind" comparisons are being

made between old and new GTDS; both versions of GTDS are using the same inputs--

therefore, they should produce the same results (regardless of the physical meaning of the

cases). Other testing of the Semianalytic orbit generator did concentrate on physical

meaning and, hence, care had to be taken to distinguish between osculating and mean

elements.

The first test case analyzed was a 2x0 GEMT3 run. For this run, HWIRE was configured

to include short-periodic effects; Appendix B provides a listing with HWIRE configured in

this manner.

Table 5.8 Semianalytic Orbit Generator Validation
Old GTDS vs. New GTDS (2x0 GEMT3)

State Old GTDS New GTDS

X 0.2369421400759936D+04 0.2369421400759936D+04

Y 0.1225725889956325D+03 0. 1225725889956325D+03

Z 0.6663929392961351D+04 0.6663929392961351 D+04

Following this, a 21x0 GEMT3 run was made (with HWIRE configured as in Appendix

B):
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Table 5.9 Semianalytic Orbit Generator Validation
Old GTDS vs. New GTDS (210 GEMT3)

State Old GTDS New GTDS

X 0.2369174925655906D+04 0.2369174925655906D+04

Y 0.1225704555654358D+03 0.1225704555654358D1+03

Z 0.6663860871035542D+04 0.6663860871035542D+04

This testing confirmed that the zonal portion of GTDS was functioning properly. The next

step was to incrementally add the tesseral harmonic terms. The first tesseral harmonic case

was a 2x2 GEMT3 run (with HWIRE configured as in Appendix B):

Table 5.10 Semianalytic Orbit Generator Validation
Old GTDS vs. New GTDS (2x2 GEMT3)

State Old GTDS New GTDS

X 0.2369084341423533D+04 0.2369084341423533D+04

Y 0.1228935326984567D+03 0. 1228935326984567D+03

Z 0.6664000865173634D+04 0.6664000865173634D+04

Then, an 8x8 GEMT3 run was executed (with HWIRE configured as in Appendix B):

Table 5.11 Semianalytic Orbit Generator Validation
Old GTDS vs. New GTDS (8x8 GEMT3)

State Old GTDS New GTDS

X 0.2368712358523536D+04 0.2368712358523536D+04

Y 0.1229598651081748D+03 0. 1229598651081748D+03

Z 0.6663903532911122D+04 0.6663903532911122D+04
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The final test case comparing the two versions uf GTDS was a 21 x21 GEMT3 run (with

HWIRE configured as in Appendix B). Section 4.3.5 outlined a minor modification that

was made to "old" GTDS which affected 21x21 Semianalytic runs; for this reason, there

really were two versions of old GTDS for the 21x21 Semianalytic testing. Table 5.12 and

Table 5.13 compare new GTDS to un-modified and modified old GTDS:

Table 5.12 Semianalytic Orbit Generator Validation
Un-Modified Old GTDS vs. New GTDS (21x21 GEMT3)

State Un-Modified Old GTDS New GTDS

X 0.2368701370462711D+04 0.2368719128112088D+04

Y 0.1230491326940926D+03 0.1229402039157586D+03

Z 0.6663910978707961D+04 0.66638710U0900344D+04

Table 5.13 Semianalytic Orbit Generator Validation
Modified Old GTDS vs. New GTDS (21x21 GEMT3)

State Modified Old GTDS New GTDS

X 0.2368719128112088D+04 0.2368719128112088D+04

Y 0.1229402039157586D+03 0.1229402039157586D+03

Z 0.6663871060900344D+04 0.6663871060900344DD+04

Figure 5.13 indicates that the modified version of old GTDS and new GTDS provide exact

agreement for the 21x21 GEMT3 test case.

All of the test cases described in Table 5.8 through Table 5.13 represented one day arcs

with one-quarter day step-sizes (21600 sec). It should be noted that in the debugging
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process, numerous runs containing different combinations of short-periodic terms were

made to ensure proper functioning of the short-periodic orbit generator. On the BIGSIM

VAX, this process required changing various "flags" in subroutine HWIRE for the zonal,

2m-daily, tesseral, third-body, J2 / m-daily coupling, and J2 short periodic contributions

from the "default" values given in Appendix B. This debugging process will be greatly

simplified when the Semianalytic input processor is ported from the UNIX environment to

the VAX environment.

Testing of 50x50 class gravity field models for the Semianalytic orbit generator relied

heavily on the previously completed testing of the Cowell orbit generator. This testing,

which attempts to "fit" the Semianalytic theory to the Cowell Theory, consisted of the

following steps: (1) a Cowell ephemeris listing and an associated ORBI file containing

time-tagged values of position and velocity were generated, (2) the Differential Correction

Program (DC) was used to perform a Precise Conversion of Elements (PCE) to obtain a set

of mean elements which corresponded to the osculating elements used by the Cowell orbit

generator, (3) a Semianalytic ephemeris listing and an associated ORB 1 file containing

time-tagged values of position and velocity were generated with the computed mean

elements (including short-periodic contributions), and (4) the Ephemeris Comparison

Program was used to compare the two ORB 1 files. The input deck required to make this

run is given in Figure 5.12:
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CONTROL DATAMGT LNDSAT-4 8207201
OGOPT
POTFIELD 1 13
END
FIN
CONTROL EPHEM LNDSAT-4 8207201
EPOCH 820224.0 0.0
ELEMENT1 1 2 1 7077.8 0.0011 98.2
ELEMENT2 158.1 89.4 176.0
OUTPUT 1 2 1 820226.0 0.0 43200.
ORBTYPE 2 1 1 10.0
OGOPT
MAXDEGEQ 1 50.
MAXORDEQ 1 50.
OUTOPT 1 820224000000. 820226000000. 3600.
END
FIN
CONTROL DC LNDSAT-4 82G7201
EPOCH 820224.0 0.0
ELEMENT1 1 6 1 7077.8 0.0011 98.2
ELEMENT2 158.1 89.4 :76.0
OBSINPUT 9 820224000000.0 820226000000.0
ORBTYPE 5 1 1 86400.0 1.0
DMOPT
OBSDEV 21 22 23 100. 100. 100.
OBSDEV 24 25 26 10. 10. 10.
END
OGOPT
MAXDEGEQ 1 50.
MAXORDEQ 1 50.
STATEPAR 3
STATETAB 1 2 3 4.0 5.0 6.0
END
DCOPT
PRINTOUT 1 4
CONVERG 30 1 1.D-5
END
FIN
CONTROL EPHEM OUTPUT LNDSAT-4 8207201
OUTPUT 1 2 1 820226.0 0.0 43200.
ORBTYPE 5 1 1 86400.0 1.0
OGOPT
MAXDEGEQ 1 50.
MAXORDEQ 1 50.
OUTOPT 21 820224000000.0 820226000000.0 3600.
END
FIN
CONTROL COMPARE I.NDSAT-4 820720'

COMPOPT
CMPEPHEM 1102102 820224000000.0 820226000000.0 480.0
CMPPLOT 1 2.0
HISTPLOT 1102102 820224000000.0 820226000000.0 28800.C
END
FIN

Figure 5.12 GTDS Card Deck to Fit Semianalytic Theory to Cowell Theory
50x50 GEMT3
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The results are summarized next:

POSITION RMS VELOCITY RMS

(km) (km/sec)

RADIAL 5.0203D-04 2.0035D-06
CROSS TRACK 1.0954D-03 7.0972D-07
ALONG TRACK 1.9867D-03 6.8605D-07
TOTAL 2.3235D-03 2.2335D-06

Figure 5.13 Two Day 50x50 GEMT3 Fit of Semianalytic Theory to
Cowell Theory

These results imply a position RMS error of a little over 2 meters for a two day fit. For

comparison purposes, this same type of run for a 21x21 GEMT3 field (60 second Cowell

step size) was made with the un-modified and modified versions of old GTDS. The results

are summarized in the following figures:

POSITION RMS VELOCITY RMS

(km) (km/sec)

RADIAL 5.9446D-02 1.2108D-04
CROSS TRACK 6.2275D-02 5.9055D-05
ALONG TRACK 9.0760D-02 4.5775D-05
TOTAL 1.2510D-01 1.4228D-04

Figure 5.14 Two Day 21x21 GEMT3 Fit of Semianalytic Theory to
Cowell Theory, Un-Modified Old GTDS

POSITION RMS VELOCITY RMS

(km) (km/sec)

RADIAL 4.8325D-04 1.5221D-05
CROSS TRACK 1.7147D-03 1.6065D-06
ALONG TRACK 1.4139D-02 7.2171D-07
TOTAL i.4251D-02 1.5322D-05

Figure 5.15 Two Day 21x21 GEMT3 Fit of Semianalytic Theory to
Cowell Theory, Modified Old GTDS
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These results show that the 50x50 field provided a fit between the two theories which was

as good as the fit with the 21x21 field. A direct comparison of the total RMS errors

between the two field sizes was not really of consequence since the differing field sizes

captured different dynamics; the 50x50 field captured resonant terms at the 29th order

which were obviously not captured by the 21 x21 field. In essence, two different problems

were being analyzed. However, comparisons to the previously accepted 21x21 fit

provided a reasonable sanity check of the 50x50 fit. It was concluded that the results of the

Semianalytic orbit generator compared favorably with the results of the Cowell orbit

generator. Since the Cowell orbit generator had previously been successfully validated

against TRACE, the validation of the Semianalytic orbit generator was considered

complete.

5.7 Impact of 50x50 Gravity Models in Orbit Determination

The previous work in this Chapter described the validation of the Cowell and Semianalytic

orbit generators of GTDS. Once this validation was complete, some preliminary test cases

were run to assess the impact of 50x50 gravity field models in the orbit determination

process. It was of particular interest to study the effects of resonant terms which could not

be captured by 21x21 class models. For example, a satellite completing approximately 14

revolutions per day experiences resonant effects at the 14th (for degrees greater than 21),

28th, and 42nd order which are not captured by 21x21 models. The resonant effects

produced at these orders would be captured by the new 50x50 gravity model.

The test case chosen to study these effects incorporated a two hundred day fit of the 21 x21

GEMT3 Averaged Orbit Generator to the 50x50 GEMT3 Averaged Orbit Generator

(AOG). Since the DMSP study orbit [6] closely resembles the 14 revolution per day
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pattern, it was chosen for use in this test case. As with the LANDSAT and RADARSAT

orbits described in Section 3.4.1, this orbit implements sun-synchronous, repeat

groundtrack, and frozen orbit constructs. Figure 5.16 depicts the input deck (due to its

length, it must be listed over two pages):

CONTROL DATAMGT DMSPBL-6 1234567
OGOPT

POTFIELD 1 13
END
FIN
CONTROL EPHEM DMSPBL-6 1234561
EPOCH 820223.0 0.0
ELEMENT1 a 6 1 7272.0 0.001125 99.0
ELEMENT2 65.931 90.0 0.0
OUTPUT 1 2 1 820911.0 0.0 864000.
ORBTYPE 5 1 1 43200. 1.0
OGOPT
NCBODY 1
RESONPRD 432000.0
MAXDEGEQ 1 50.
MAXORDEQ 1 50.
OUTOPT 1 820223000000.0 820911000000.0 14400.
END
FIN
CONTROL DC DMSPBL-6 1234b66
EPOCH 820223.0 0.0
ELEMENT1 a 6 1 7271.99999 0.0011235 98.9999
ELEMENT2 65.93136 89.66716 0.322
OBSINPUT 9 820223000000.0 820911000000.0
ORBTYPE 5 1 1 43200. 1.0
DMOPT
OBSDEV 21 22 23 100. 100. 100.
OBSDEV 24 25 26 10. 10. 10.
END
OGOPT
NCBODY 1
MAXDEGEQ 1 21.
MAXORDEQ 1 21.
STATEPAR 3
STATETAB 1 2 3 4.0 5.0 6.0
END
DCOPT
PRINTOUT 1 4
CONVERG 30 1 1.D-4
END
FIN
CONTROL EPHEM OUTPUT DMSPBL-6 1234567
OUTPUT 1 2 1 820911.0 0.0 864000.0
ORBTYPE 5 1 1 43200. 1.0
OGOPT
NCBODY 1
MAXDEGEQ 1 21.
MAXORDEQ 1 21.
OUTOPT 21 820223000000.0 820911000000.0 14400.
END
FIN
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CONTROL COMPARE DMSPBL-6 1234567
COMPOPT
CMPEPHEM 1102102 820223000000.0 820911000000.0 3600.0
CMPPLOT 1 2.0
HISTPLOT 11-2102 820223000000.0 820911000000.0 216000.0
END
FIN
CONTROL COMPARE DMSPBL-6 1234567
COMPOPT
CMPEPHEM 1102102 820223000000.0 820911000000.0 1200.0
CMPPLOT 1 2.0
HISTPLOT 1102102 820223000000.0 820911000000.0 72000.0
END
FIN

Figure 5.16 200 Day Fit of 21x21 GEMT3 AOG to 50x50 GEMT3 AOG

where the value "a" was given for the input coordinate system of the elements on the

ELEMENT1 card. This value was not explicitly given since both mean earth equator and

equinox of 1950.0 and true of reference, Earth equator and equinox input systems were

used. It should be noted that the difference in the results between the two systems was of

no consequence.

Note in this figure how the RESONPRD card was used to force the 42nd order resonant

effects into the averaged equations of motion for the 50x50 field. The use of this card

required knowledge of the expected resonant periods:

resonant period = 27t where tI.n +-m (5.6)

in which n is the satellite's mean motion

n=. (5.7)
V a 3

g is the gravitational parameter, a is the semimajor axis, t and m (order) are geopotential

indices, 0 is the Greenwich Hour Angle, o is the argument of perigee, and Q is the
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longitude of the ascending node. For the DMSP study case- the value for 0 was set to

equal the sun-synchronous value of 1.991x10- 7 rad/sec [23]; gt, the GEMT3 value of

398600.436 km 3/sec 2 ; a, the input mean semimajor axis value of 7272 km; 6), to the

frozen orbit value of zero [23]; and 0, to the rotational rate of the earth of 0.72921159x 10-4

rad/sec. The combinations of resonant geopotential indices led to the following "expected"

periods:

t = 1, m = 14 • resonant period = 27.94 days
t = 2, m = 28 = resonant period = 13.97 days (5.8)
t = 3, m = 42 => resonant period = 9.31 days

The smallest period of 9.31 days would not have been captured with GTDS's default value

of 10 days. Hence, the RESONPRD card was used with a value of 5 days (432000 sec) to

force the effects of the 42nd order in to the AOG (refer to Section 4.2.4 for further details

on the RESONPRD card).

This card also indicates that the third body effects of the sun and moon were turned-off for

this run; this configuration ensured that the output contained geopotential-only related

information.

As expected, the results of this test show that significant errors resulted from the 21 x21 fit:

POSITION RMS VELOCITY RMS

(km) (km/sec)

RADIAL 3.3576D-02 1. 6680D-03
CROSS TRACK 1.7800D-02 1.6002D-05
ALONG TRACK 1.6392D+00 3.4504D-05
TOTAL 1.6396D+00 1.6684D-03

Figure 5.17 200 Day GEMT3 Fit of 21x21 AOG to 50x5O AOG
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Appendix C provides a listing of the plots of these errors, as well as plots of element

histories and element differences. In these plots, a 60 day period is highly visible. A

period of this length is surprising since it does not match one of the "expected" values

given in (5.8). At this point, much conjecture exists over what this result exactly means.

A few opinions are noted here:

(1) The calculation of the "expected" resonant periods is flawed since the value for 6)

was set to zero. For a perfect frozen orbit, the mean rate of perigee is zero--and this value

works well for "quick and dirty" calculations. However, if this value is not exactly zero,

the (t I - m 0) divisor may become a value such that the resonant period is really 60 days.

Inspection of the plots in Appendix C indicate that one could derive a worst-case value for

cb from the perigee history plot which would be valid over certain regions. In addition,

these plots show that a better value to use for the mean semimajor axis may be 7272.015

km. However, periods resulting from computations using these updated values are much

closer to the values obtained in (5.8) than they are to the visible 60 day period.

This theory can also be tested by solving the equation given in (5.6) for 6). For this test

case, it is obvious that the 14th order terms provide for larger resonant periods than the

28th and 42nd order terms. Using the conditions for this 14th order resonance (i. e., t=l,

m=14), the updated value of 7272.015 km for semimajor axis, and the 60 day visible

period, the value for 6. must be approximately 19 deg/day to produce the 60 day signature.

19 deg/day is an unrealistic value of co for the chosen frozen orbit case.

These arguments tend to refute that the possibility that the calculation of the resonant

periods of (5.8) is flawed.
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(2) Coupling exists between J2 and the resonant terms. Evidence to support this

opinion stems from the sernimajor axis history plot. Due to the nature of the VOP

equations, rates in the sernimajor axis are caused by either shon-periodic effects or

resonance terms. Since the short-periodic effects have been turned off in this test case, the

variation in sernimajor axis must result from resonance. However, using the argument in

(1), it can be assumed that the visible 60 day period is not reflective of the actual resonant

period. This period must result from some other effect of the resonance. It is known that

J2 introduces rates in perigee and the node. The work of Zeis [661 indicates that a periodic

signature of about 60 days can be expected in the plots for eccentricity, inclination,

longitude of ascending node, and argument of perigee due to the effects of the zonal

harmonics (dominated by J2). The rates in perigee and the node, in turn, affect the

resonant period. Therefore, there is a coupling effect between J2 and the resonant terms to

produce the 60 day signature.

To test this argument, a separate AOG run can be made in which J2 is set to a small value

(in order to reduce the magnitude of the coupling effect). A semimajor axis history plot

resulting from a run of this type is also given in Appendix C. Clearly, the 60 day signature

is gone. However, it must be noted that this run corresponds to a different problem; setting

J2 to a small value disrupts the frozen orbit geometry, thereby disallowing the assumption

that 6) is zero.

(3) Linear combinations of the resonant periods result due to their symmetric nature.

An analysis of (5.8) shows that the three resonant periods can be expressed as multiples of

28 days (i. e., 3 times the 42nd order period; 2 times the 28th order period; and I times the

14th order period). It is of interest to note that 56 days is another multiple of these resonant

periods (and approximately equal to the 60 day visible period). In this manner, the three
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periods may align at multiples of 28 days to produce an effect which has a period greater

than any of the individual contributing periods.

One difficulty with this argument stems from the results of the separate AOG run with a

small value for J2 . As was stated in (2), the 60 day period vanishes in the semimajor axis

plot from this run. A small value for J2 should not disrupt any combinatory effect among

the individual contributing periods (if this combinatory effect is realistic). However, it is

possible that an effect with a period greater than any of the three individual contributing

periods is evident, but not visible due to a selection effect or other graphing phenomenon.

It is clear that interesting results have been obtained, some of which still remain a source of

debate and require additional study. Chapter 6 outlines conclusions and suggestions for

further research.
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Chapter 6

Conclusions / Future Work

6.1 Summary

The primary objective of this thesis was to improve the gravity modeling capability of

Draper Laboratory's version of the Goddard Trajectory Determination System (GTDS).

Specifically, the limits of the gravity field model were extended from degree and order

twenty-one to degree and order fifty. This extension required (1) a study of the stability of

the various recursions used to calculate the Legendre polynomials, associated Legendre

polynomials, Jacobi polynomials, and Hansen coefficients, as well as their product with

the harmonic coefficients, (2) many modifications to the software, and (3) an extensive

validation process to ensure that the modifications were implemented correctly. The

BIGSIM VAX 8820 was the sole platform used for the stability testing, code

modifications, and the validation process. However, stabili:y conclusions were drawn for

the IBM and UNIX environments, which also support operational versions of GTDS. The

following paragraphs provide a summary of the results obtained from the various chapters

of this thesis:

Chapter One provides top-level introductory material. Three main areas are addressed: (1)

the history of gravity modeling, (2) the need for models of high degree and order, and (3)

the numerical boundaries for the various operational versions of GTDS. A brief outline of

the thesis is also given.
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Chapter Two details the various mathematical techniques that are required for the work in

this thesis. Spherical harmonic, Keplerian, and Equinoctial formulations of the potential

are derived. These derivations are followed by a description of the effects of the zonal and

tesseral harmonics. The equations of motion used by the Cowell and Semianalytic orbit

generator are also presented. Finally, a description of the generalized method of averaging,

the process used to separate averaged equations of motion (containing secular and long

periodic equations of motion) from short periodics, is given.

Chapter Three describes the stability testing undertaken to determine if normalized or un-

normalized recursions were required to support 50x50 gravity field models. The results

indicate that the VAX, Sun Workstation, and Silicon Graphics versions of GTDS will all

support 50x50 gravity field models in an un-normalized sense. It is advisable, however, to

convert the IBM version to normalized formulae before extending the gravity modeling

limits in this environment. It should be noted that the stability study for the Hansen

coefficients only analyzed the resonant orders for a 14 rev/day satellite which are captured

by a 50x50 field (orders 14, 28, and 42). The testing for the 14th order provided a more

rigorous test than the 28th and 42nd orders since more computations are made in a

recursive calculation which starts at the lowest order.

Chapter Four focuses on GTDS: (1) an overview of GTDS and its various programs is

given, (2) the developmental history of GTDS is described, (3) the various functions in

GTDS related to gravity modeling (numerical, analytical, and semianalytical) are outlined,

(4) input processing and database maintenance related to the gravity model is discussed,

and (5) code modifications are presented. In all, a total of 144 routines and approximately

2900 lines of code were modified in support of the work for this thesis. In addition, 28

new routines encompassing 4990 lines of code were added to GTDS. All of these new

routines are include files or associated block datas which store arrays and variables related
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to the gravity modeling capability within GTDS. These additions provided for the

following new gravity models:

*GEM1OB (36x36)

*GEMT2 (50x50)

*GEMT2 Clone (50x50)

*GEMT3 (50x50)

*GEMT3 Clone (50x50)

*GEMT3S (50x50)

*WGS84 (41x41)

*JGM-1 (50x50)

*JGM-1 Clone (50x50)

*JGM-2 (50x50)

Chapter 5 describes the validation process that was used to ensure that the 50x50 gravity

field model was implemented properly. The testing outlined in this section includes the use

of the Differential Correction Program, Ephemeris Generation Program, Ephemeris

Comparison Program, Data Simulation Program, Data Management Program, and the

Permanent File Report Generatior Program. Comparisons of GTDS with TRACE,

Aerospace's orbit determination program, demonstrate that less than 2 meter RMS errors

for arcs encompassing about two weeks result from the Cowell orbit generator. This

comparison between independent orbit determination programs serves to provide a

comprehensive test of coordinate systems, force models, integration methods, and time

systems. A two-day 50x50 GEMT3 fit of Semianalytic Theory to Cowell Theory provides

RMS errors of a little over 2 meters. These results correspond to LANDSAT 6 type orbits

(sun synchronous, repeat groundtrack, frozen orbits). Initial testing of the impact of 50x50

gravity field models for 14 rev/day resonant orbits uncovered 60 day periods which appear
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to be unrelated to the actual periods of the contributing resonant orders. Several theories

are given in Chapter 5 to possibly explain this phenomenon. The strongest explanation is

associated with coupling between the J2 and the resonant terms.

6.2 Conclusions

The 50x50 gravity field model has been accurately incorporated into Draper Laboratory's

version of GTDS. The results presented in Chapter Five reflect a rigorous and complete

validation process. The coupling of the 50x50 class gravity models with the Draper

Semianalytical (Precise Mean Element) Orbit Propagator results in a unique tool for long

term orbit prediction. It should be noted that this long term prediction capability is

accomplished in a very efficient manner and spans a multitude of computing environments.

In -hort, Draper Laboratory offers a flight dynamics package for astrodynamic applications

that is equally well suited for academic environments, laboratory studies, or operational

type mission support.

It is not conceived that the work in this thesis will become stagnant. Work has begun to

expand GTDS to incorporate 70x70 class gravity field models. Efforts in this area will

serve to further improve the capability of GTDS to model the effects of the non-spherical

earth perturbation.

6.3 Future Work

The work for this thesis has provided a tool with a variety of applications. This tool creates

the potential for much future work, which can generally be organized into three categories:
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(1) software related items, (2) analysis related items, and (3) mission related items. Each

of these three areas will be addressed in this section.

Software Related Items

(1) The Semianalytic input processor needs to be ported from the UNIX to the VAX

and IBM environments. The incorporation of this input processor provides for a simple

adjustment of the options for the averaged equations of motion and the short periodics. In

other words, the use of this input processor replaces the "tinkering" that had to be done to

subroutine HWIRE.FOR. In addition, the input processor provides for a listing of chosen

options on the output report, which aids in the identification of stored runs.

(2) Along the same lines, it is desirable to port the 50x50 version of GTDS from the

VAX environment to the UNIX environments as soon as possible. Moving the 50x50

version to different environments serves to increase the applicability of the tool.

(3) As explained in Section 4.3.4, it is desirable to tie together all of the new common

areas that were introduced as part of the work in this thesis. GRAVITY.CMN is a stub

include file built to provide for a single modification point concerning the generic

parameters representing the limits of the gravity field model. This file would have to be

included in the common areas containing these generic parameters (refer to Table 4.16 for a

listing of these common areas). Then, EQUIVALENCE statements could be used to tie the

common areas together.

(4) A bug in the small files directory was uncovered. This bug corresponds to the

number of models on the permanent earth potential field file. Currently, this value is

explicitly set to nine, the number of models GTDS could handle with the 21 x21 standard.

247



For the work in this thesis, the bug could be avoided by running GTDS in DEBUG mode

and updating this value to the current number of models. It should be noted that the scope

of this error is limited to the Permanent File Report Generation Program.

(5) The output reports generated by GTDS contain a listing of the harmonic coefficients

used for a particular run. When the expansion to 50x50 gravity field models was made, the

output of coefficients beyond 21 x21 became slightly un-formatted. For aesthetic purposes,

this output should be improved.

(6) During the final review of the work done in this thesis, a small bug was found in

SPREAL.CMN. The dimension of the variables CECCEN and SECCEN was mistakenly

related to the limits of the gravity field model. These variables, which are used in the third-

body model, need to have their limits reset to (6,44).

Analysis Related Items

(1) Any software related tools which can be used to perform global searches are

desirable for significantly modifying large software systems like GTDS. As described in

Chapter 4, the link map was an extremely helpful tool in identifying the various subroutines

and common areas which required modification. Any tool which further processes this

map, or the structure of GTDS, serves to enhance efficiency and thoroughness. For

example, this tool could be used to check if the introduction of an include file causes any

conflicts with variables in the local routine. One tool of this sort is PERL [63], which is

available in the UNIX environment.

(2) A more detailed study of the stability of the Hansen coefficients could be made. As

was described in Section 3.4.2, only the resonant orders for a 14 rev/day were analyzed.
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This study should be extended to include orders up to and including fifty. In addition, a

standalone routine to compute mean element rates could be developed. This routine would

provide a capability in the Semianalytical theory analogous to the routine used to compute

Cowell accelerations.

(3) A literature search should be made for an alternative expression for calculating

resonant periods. The difficulties using the expression given in (5.8) were explained in

Section 5.7. A distinct formula might remove some of the uncertainty concerning the sixty

day signature described by argument (1) in this section.

(4) Comparisons could be made between results generated from the different gravity

models listed in Table 4.3. These comparisons would serve to categorize the accuracy of

the various models.

(5) Validation runs need to made for the analytical theories described in Table 4.1.

These theories use the values for the first few zonal harmonics and, thus, must be checked

against benchmarked cases to ensure that the work for this thesis did not hamper this

functionality.

(6) A test of the variational equations for values other than the default (2x0) standard

should be made. Section 5.5 outlined the testing of a Cowell Differential Correction run

using the default values of 2x0. This run could be replicated using larger values for the

degree and order on the MAXDEGVE and MAXORDVE cards (refer to Section 4.2.4).

(7) Other accuracy improvement issues concerning GTDS require attention. For

example, the J2000 coordinate system and a solid earth tides model should be added to
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GTDS. These capabilities would allow GTDS to support accuracy levels of five meters or

better in orbit determination.

Mission Related Items

Numerous mission related scenarios can be tested using the 50x50 gravity field model.

The work for this thesis concentrated on implementing this capability properly within

GTDS. Due to time constraints, not much mission related testing could be undertaken with

this tool. It would be desirable to determine how the 50x50 class gravity field models

affect certain orbit constructs, such as the frozen orbit. Work of this nature could evolve

into separate thesis type studies. In addition, the extension of GTDS to 70x70 class gravity

field models coupled with a study of the impact of 70x70 class models would make for a

nice thesis. This type of effort would allow for comparisons between 50x50 and 70x70

class models.
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Appendix A

Element Sets

A.1 Background

When working in satellite theory or astrodynamics, it is often convenient to describe the

size, shape, and orientation of a body's orbit. In general, five independent quantities called

"orbital elements" are sufficient to carry out this task (a sixth element is used to pinpoint the

position of the satellite along the orbit at a particular time) [2]. One well known set of

elements is the classical orbital element set, sometimes better known as the Keplerian

orbital element set. Another set is the equinoctial element set, which removes singularity

problems experienced by the Keplerian orbital elements in the classical orbital element

formulation of the Variation of Parameter equations. This appendix will discuss these two

element sets since they represent the element sets used in this study.

A.2 Classical Orbital Elements

Most initial courses in astrodynamics focus on the two-body problem, which Escobal [22]

defines as the motion of body A with respect to body B, with only the mutual attractions of

A and B taken into consideration. In other words, perturbations (effects which cause

deviations from the norm) to a body's orbit have been neglected. In addition, the bodies

under investigation are assumed to be spherical, which allows the bodies to be treated as
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though their masses were concentrated at their centers. The equation governing two-body

motion can be derived from Newton's universal law of gravitation [2]:

r2  r (A.1)

which can be re-written for both the small (m) and large (M) mass:

mim = .GMm r
r2 r (A.2)

MPM =- GMm r
r2 r (A.3)

If equation (A.3) is subtracted from equation (A.2), the following form is obtained:

G(M+m) r
r2 r (A.4)

The quantity G (M + m) is known as the gravitational parameter, At. For applications in

which an artificial satellite is orbiting a planet, the smaller mass body (the satellite) is much

less than the larger mass body (the planet), and can be ignored. In these cases, gt is

reduced to GM. The final form for the two-body equation of motion is expressed in the

following manner:

= 0
r3 (A.5)

where r is the position vector of the satellite with magnitude r (dots represent time

differentiation) and G is the universal gravitational constant (6.670 x 10-8 dyne cm 2/gm 2 ).

The solution to this differential equation leads to six constants of integration (this equation

can be broken down into the unit directions producing three, second order differential
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equations--which leads to six constants of integration) These constants (see Table A. 1)

have traditionally been recognized as the classical orbital elements (also refer to Figure A. 1

[2] ).
Table A.1 Keplerian Elements

Symbol Name Physical Description

a semimajor axis describes size of orbit

e eccentricity describes shape of orbit

i inclination the angle between the K axis and the angular

momentum vector, h [2]

longitude of the ascending node the angle in the equatorial plane between the vernal

equinox and the longitude of the ascending node

) argument of perigee the angle in the orbit plane between the longitude of

the ascending node and periapsis

time of periapsis passage the time the satellite was at periapsis

R
satellite's poSvtson

at epoch io

go

/1/
vernal equi•no

direction

Figure A.I Classical Orbital Elements
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Two other elements of interest when discussing classical orbital elements are true anomaly

(v) and mean anomaly (M). True anomaly is the angle in the orbital plane between

periapsis and the satellite's position at a specified time, while mean anomaly is the angle

measured from periapsis to the satellite's mean position, as if the satellite had constant

velocity throughout the orbit period [30].

Two terms that are frequently encountered when discussing orbital elements are "fast" and

"slow" elements. Slow elements represent those that are, for the most part, considered a

constant throughout the orbit (a,e,i,K2,o). The fast element(s), on the contrary, rapidly

change as a function of time throughout the orbit (M).

Specific values for the semimajor axis and eccentricity describe the motion (orbit) of a

particular body; Table A.2 (next page) lists the characteristic conic sections for the range of

values of semimajor axis and eccentricity.

Table A.2 Semimajor Axis and Eccentricity Ranges for Orbits

Conic Section Semimajor Axis Eccentricity

Circle a>0 (a=r) e=0

Ellipse a > 0 0 < e <

Parabola a = oo e=1

Hyperbola a < 0 e > 1
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A.3 Equinoctial Element Set

As stated in the introduction of this appendix, singularities arise in the classical orbital

element formulation of the Variation of Parameter equations (divide by zero errors occur for

values of inclination and eccentricity approaching zero). The equinoctial element set

removes such singularities. Table A.3 describes these elements in terms of the classical

elements (refer to next page).
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Table A.3 Equinoctial Elements

Symbol Definition

a a=a

h h = e sin (o + IQ)

k k = e cos (co + I))

p = tan ½ sinQ•,I = 1
p2

p = coti -sinQ , I = -1
2

q = tan - cos 2 I=1q 2

q = cot ½ cos ,=-1
2

Retrograde Factor +1 (direct equinoctial elements, 00 < i < 1800)

-1 (retrograde equinoctial elements, 00 < i < 1800)

Again, a distinction can be made between fast and slow elements. The slow elements are a,

h, k, p, and q, while mean longitude (X) is the fast variable.
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Appendix B

HWIRE Listing

B.1 Description

HWIRE.FOR is the subroutine in GTDS which sets the options for the averaged equations

of motion and the short periodics. A user must modify this routine to the desired form if

no Semianalytic input processor is available (currently, the input processor is not available

in the VAX and IBM environments--only the UNIX environments; reference Section 4.1.2

and Section 5.6). As stated in Chapter 5, a listing is provided here as a reference point for

the testing that was done to validate the Semianalytic orbit generator (the INCLUDE file

SPREAL.CMN is given after HWIRE).

SUBROUTINE HWIRE 00010000
C 00020000
C 00030000
C 00040000
C ..... 00050000
C FUNCTION 00060000
C ******** 00070000
C 00080000
C 00090000

C 00100000

C This subroutine sets options for the averaged equations of motion 00110003
C and the short-periodics. These options do not yet have an input 00120003
C processor. 00130003
C 00140000

C 00150000
C 00160000
C /ANAVIN/ *.*... ************** *** ** * ***. **** 00170000
C 00180000
C Third-body averaging options. 00190t23
C 00200000
C IANGTH 0 Third-body analytical averaging theory. 00210003
C 1 single averaging 00220003
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C 2 double averaging 00230003
C 00240000
C ITIDE 0 Solid tide model (single-averaged theory 00250003
C based on NSWC CELEST P2 high-precision 00260003
C model). 00270003
C 1 analytical averaging 00280003
C 2 off 00290003
C 00300000
C Double-averaged analytical third-body models. 00310003
C 00320000
C Maximum and minimum multiples of the phase 00330003
C angles used in the resonance model. 00340003
C 00350000
C ISMAX 0 Maximum multiple of lambda' (limit 10) 00360003
C ISMIN 0 Minimum multiple of lambda' (limit -10) 00370003
C 00380000
C ITMAX 0 Maximum multiple of lambda (limit 20) 00390003
C ITMIN 0 Minimum multiple of lambda (limit -20) 00400003
C 00410000
C Methods of computing third-body potential 00420003
C expansions. 00430003
C 00440000
C NENDTH I/O Maximum powers of a/r or a/a' 00450003
C MENDTH I/O Maximum powers of e 00460003
C 00470000
C IRSTAR 0 Maximum powers of e' (if Newcomb operators 00480003
C are used) or maximum d'Alembert character- 00490003
C istics (if closed-form) in the expansions 00500003
C for the third-body potentials. 00510003
C 00520000
C IRFLAG 0 Method for computing third-body Hansen 00530003
C coefficients in third-body potentials. 00540003
C I closed-form 00550003
C 2 Newcomb operator expansion 00560003
C 00570000
C IMFLAG 0 Method for computing satellite Hansen 00580003
C coefficients in third-body potentials. 00590003
C I closed-form 00600003
C 2 Newcomb operator expansion 00610003
C 00620000
C IPOSDL 0 Third-body emphemeris flag. 00630003
C 0 compute position only 00640003
C 2 compute position and velocity 00650003
C 00660000
C Numerical averaging control switches. 00670003
C 00680000
C IDRGAV I Quadrature control switch for drag in averaged 00690003
C equations of motion. 00700003
C ISLRAV I Quadrature control switch for solar radiation 00710003
C pressure in averaged equations of motion. 00720003
C 00730000
C Second-order averaging options. 00740003
C 00750000
C IDRDR 0 Second-order drag effects. 00760003
C 0 Iszak's J2 height correction (if on) 00770003
C 1 J2-drag 00780003
C 2 J2-drag, drag-drag 00790003
C 3 J2-drag, drag-drag, numeric drag-J2 00800003
C 4 J2 drag, drag-drag, analytic drag-J2 00810003
C 5 Iszak's J2 height correction (if on), 00820003
C analytic drag-J2 00830003
C 00840000
C Second-order averaging short-periodic control switches used in 00850003
C computing the mean element rates. 00860003
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C 00870000

C JSPJ2 0 Number of coefficients for the J2 shcrt- 00880003
C periodics. 00890003
C JSPDRG 0 Number of coefficients for the drag short- 00900003
C periodics. 00910003

C 00920000
C Output options. 00930003
C 00940000
C IORBIT 0 Write out a semianalytic orbit file. * 00950003
C 00960000
C 00970000
C 00980000
C /SPINTG/ *************009**** * *
C 01000000
C Position and velocity interpolator. 01010003
C 01020003
C INTPOS 0 Interpolate for position and velocity. 01030003
C NPTPOS 0 Number of points in the position and velocity 01040003
C interpolator. 01050003
C 01060000

C Short-periodic coefficient interpolator 010700C3
C 01080003
C INTCOF 0 Interpolate for the short-periodic coef- 01090003
C ficients. * 01100003
C NPTCOF 0 Number of points in the interpolator for 01110003
C the short-periodic coefficients. 01120003
C 01130000
C Gravitational perturbation short-periodic options. 01140003
C 01150003
C ISPBOD 0 List of bodies causing short-periodic 01160003
C effects, including the central body. 01170003
C 01180000
C IZONAL 0 Central body zonal harmonic short-periodic 01190003
C option. 01200003
C 1 analytical coefficients 01210003
C 2 numerical coefficients 01220003
C 3 off 01230003
C IMDALY 0 Central body m-daily tesseral harmonic 01240003
C short-periodic option. 01250003
C 1 analytical coefficients 01260003

C 3 off 01270003
C ITESS 0 Central body high-frequency tesseral 01280003
C short-periodic option. 01290003
C 1 analytical coefficients 01300003
C 3 off 01310n03
C ITHIRD 0 Third-body short-periodic option. 01320003
C 1 analytical coefficients 0:33003
C 2 numerical coefficients 01340003
C 3 off 013T0003
C IJ2J2 0 Central body J2-squared short-periodic 01360003
C option. 01370003
C 1 analytical coefficients 01380003
C 3 off 01390003
C IJ2MD 0 Central body J2 / m-daily short periodic 01400003
C option. 01410003
C 1 analytical coefficients 01420003
C 3 off 01430003
C 01440000
C Central body zonal harmonic expansion. 01450003
C 01460003
C NZN 0 Maximum power of r/a 01470003
C LZN 0 Maximum power of e 01480003
C JZN 0 Maximum power of exp(i*L) 01490003
C ITDZN 0 Method of computing time derivatives. 01500003
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C 1 analytical 01510003
C 2 finite differences 01520003
C NTDZN 0 Order of the highest time derivative. 01530003
C 01540000
C Central body m-daily tesseral harmonic expansion. 01550003
C 01560003
C NMD 0 Maximum power of r/a 01570003
C MMD 0 Maximum power of exp(i*theta) 01580003
C LMD 0 Maximum power of e 01590003
C KMD 0 Maximum power of sin(inclin) 01600003
C ITDMD 0 Method of computing time derivatives. 01610003
C 1 analytical 01620003
C 2 finite differences 01630003
C NTDMD 0 Order of the highest time derivative. 01640003
C 01650000
C Central boay J2 / m-daily coupiing. 01660003
C 01670003
C NJ2MD 0 Maximum power of r/a 01680003
C MJ2MD 0 Maximum power of exp(i*theta) 01690003
C LJ2MD 0 Maximum power of e 01700003
C IDRMD 0 Use drag / m-daily coupling? 01710003
C 1 yes 01720003
C 2 no 01730003
C 01740000
C Central booy high-frequency tesseral harmonic expansion. 01750003
C 017600C3
C NTS 0 Maximum power of r/a 01710003
C MTS 0 Maximum power of exp(i*theta) 01780003
C LTS 0 Maximum d'Alembert characteritic (maximum power 01790003
C of e outside Hansen coefficients). 01800C03
C KTS 0 Maximum power of sin(inclin) 01810003
C LTSHAN 0 Maximum power of e**2 in power series expansion 01820003
C for Hansen coefficients. 01830003
C JMINTS 0 Minimum power of exp(i*lambda) 01840003
C JMAXTS 0 Maximum power of exp(i*lambda) 01850003
C ITDTS 0 Method of computing time derivatives. 01860003
C 1 analytical 01870003
C 2 finite differences 01880003
C NTDTS 0 Order of the highest time derivative. 01890003
C 0i900000
C Third body expansions. 01910003
C 01920003
C NANGTH 0 Type of Fourier series expansion. 01930003
C 1 single expansion in F 01940003
C 2 double expansion in lambda and theta 019500C3
C NTH 0 Maximum power of a/r or a/a' 01960003
C MMONTH 0 Maximum power of exp(i*theta) in tne theta 01970003
C (m-monthly) expansion. 01980003
C MTESTH 0 Maximum power of exp(i*theta) in the double 01990003
L (tesseral) expansfon. 02000003
C LTH 0 Maximum power of e 02010003
C LZPRTH 0 Maximum power of e, 02020003
C KTH 0 Maximum power of sin(inclin) 02030003
C JMINTH 0 Minimum power of exp(i*F) or exp(i*lambda) 02040003
C 3MAXTH 0 Maximum power of exp(i*F) or exp(i'lambda) 02050003
C ITDTH 0 Method of computing time derivatives. 02060003
C 1 analytical 02070003
C 2 finite differences 02080003
C NTDTH 0 Order of the highest time derivative. 02090003
C 02100000
C Numerical short-periodic coefficients. 02110003
C 02120003
C IGRAV 0 Quadrature control switch for gravitational 02130003
C perturbations. 02140003
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C IDRAG 0 Quadrature control switch for drag. 02150003
C ISOLAR 0 Quadrature control switch for solar radiation 02160003
C pressure. 02170003
C 02180000
C NGRAV 0 Quadrature order for gravitational perturba- 02190003
C tions. 02200003
C NDRAG 0 Quadrature order for drag. 02210003
C NSOLAR 0 Quadrature order for solar radiation pressure. 02220003
C 02230000
C LGRAV 0 Short-periodic expansion longitude for gravi- 02240003
C tational perturbations. 02250003
C LDRAG 0 Short-periodic expansion longitude for drag. 02260003
C LSOLAR 0 Short-periodic expansion longitude for solar 02270003
C radiation pressure. 02280003
C 02290000
C JGRAV 0 Maximum power of exp(i*lambda) for gravitational02300003
C perturbations. 02310003
C JDRAG 0 Maximum power of exp(i*lambda) for drag. 02320003
C JSOLAR 0 Maximum power of exp(i'lambda) for solar radia- 02330003
C tion pressure. 02340003
C 02350000
C IDGRAV 0 Method of computing time derivatives for gravi- 02360003
C tational perturbations. 02370003
C IDDRAG 0 Method of computing time derivatives for drag. 02380003
C IDSOLR 0 Method of computing time derivatives for solar 02390003
C radiation pressure. 02400003
C 02410000
C NDGRAV 0 Order of highest time derivative for gravita- 02420003
C tional perturbations. 02430003
C NDDRAG 0 Order of highest time derivative for drag. 02440003
C NDSOLR 0 Order of highest time derivative for solar 02450003
C radiation pressure. 02460003
C 02470000
C Print options. 02480003
C 02490003
C KINTPV 0 Print coefficients of position and velo- 02500003
C city interpolator. * 02510003
C KINTCF 0 Print coefficients of interpolator for 02520003
C short-periodic coefficients. * 02530003
C KSP 0 Print short-periodic variations. 02540003
C KSPCF 0 Print coefficients of short-periodic vari- 02550003
C ations. 02560003
C 02570000
C 02580000
C 02590000
C /SPREAL/............................................................. 02
C 02610000
0 Position and velocity interpolator. 02620003
C 02630003
C PVSTEP 0 Nominal interval between interpolator points. 02640003
C 02650000
C Short-periodic coefficient interpolator. 02660003
C 02670003
C SPSTEP 0 Nominal interval between interpolator points. 02680003
C 02690000
C Time steps for numerical time derivatives. 027100003
C C2 7100003
C DTCENT 0 Time step for analytica- centrai-body 02720003
C spherical harmonic model. 02730003
C D-THIR 0 Time stops for analyticaj h'ird-body C274CCI

C modeis.

C DrGRAV 0 Time -tep for numerical gravitat ,cina. 5on
C perturbation model. I?
C DTDRAC l 'ime step for atmospheric draq.
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C DTSOLR 0 Time step for solar radiation pressure. 02790003
C 02800000
C 02810000
C 02820000
C /SWITCH/ ********************** * * ***** ** **02830000

C 02840000
C IBODY I Array of bodies used by averaged equations of 02850003
C motion. 02860003
C INDEG I degree of central body spherical harmonic field.02870003
C INORD I order of central body spherical harmonic field. 02880003
C 02890000
C 02900000
C 02910000
C /THRRES/ ***02920000

C 02930000
C ISRES 0 List of double-averaged third-body resonance 02940003
C ITRES 0 frequencies for each third body. There can be 02950003
C up to 20 frequencies for each of two third 02960003
C bodies. 02970003
C 02980000
C ISRES third-body mean longitude multiple 02990003
C ITRES satellite mean longitude multiple 03000003
C 03010000
C NUMRES 0 Number of double-averaged third-body resonance 03020003
C frequencies for each third body. 03030003
C 03040000
C 03050000
C 03060000
C 1 = Yes 2 =No 03070003
C 03080003
C 03090003
C 03100003
C*********4******* HISTORY ....--*********** ** *03110003

C 03120003
C 03130003

C 03140003
C VERSION: January 1987 03150003
C Fortran subroutine for the IBM 3090. 03160003
C 03170003
C ANALYSIS 03180003
C Andrew J. Green -- U. S. Army 03190003
C (original version) 03200003
C Leo W. Early, Jr. -- Charles Stark Draper Laboratory 03210003
C (current version) 03220003
C 03230003
C PROGRAMMER 03240003
C Andrew J. Green -- U. S. Army 03250003
C (original version) 03260003
C Leo W. Early, Jr. -- Charles Stark Draper Laboratory 03270003
C (current version) 03280003
C 03290000
C MODIFIER FEB 1993
C Daniel J. Fonte, Jr. -- Charles Stark Draper Laboratory
C
C 1) Included SPREAL.CMN
C
C 0330C...
C 03310000

C***************** DECLARATIONS ******* ***........ 03320000

C 03330000
C 03340000

C 0335000C

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 03360t00
C 03370000
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C Included Modules .
C
C /SPREAL/
C

INCLUDE 'SPREAL.CMN'
C
C
C Dimensions **********.**************************************-03380003

C 03390000
DIMENSION IANGTH(8) NENDTH(8) ,MENDTH(8) ,IRSTAR(8) ,03400000

* ISMAX(8) ISMIN(8) ,ITMAX(8) ,ITMIN(8) ,03410000
* IBODY(9) ITIDE(11) 03420000

DIMENSION ISPBOD(9) NANGTH(8) ,NTH(8) ,MMONTH(8) ,03430000
* MTESTH(8) LTH(8) ,LEPRTH(8) ,KTH(8) ,03440000

J JMINTH(8) JMAXTH(8) ,ITDTH(8) ,NTDTH(8) 03450000

C
C 03470000
C /ANAVIN/ ** *******************************0400

C 03490000
COMMON /ANAVIN/ IANAV(180) 03500000

C 03510000

C Third-body averaging options. 03520003
C 03530000

EQUIVALENCE (IANGTH (1) ,IANAV (126) ),C354000C
* (ITIDE (1) IANAV (163) (.035b0000
* (NENDTH (1) IANAV (45) (,03560000

* (MENDTH (1) IANAV (53) ),03570000
* (IRSTAR (1) IANAV (134) ),03580000
* (ISMAX (1) IANAV (142) (,03590000
* (ISMIN (1) IANAV (150) ),0360C000

* (ITMAX (1) IANAV (12) (,03610000

* (ITMIN (1) IANAV (20) ),03620000
* (IRFLAG IANAV (158) ),03630000

* (IMFLAG IANAV (159) ),03640000
* (IPOSDL IANAV (160) 03650000

C 03660000

C Numerical averaging control switches. 03670003
C 03680000

EQUIVALENCE (IDRGAV ,IANAV (64) (,03690000
* (ISLRAV ,IANAV (65) 03700000

C 03710000

C Second-order averaging options. 03720003
C 03730000

EQUIVALENCE (IDRDR ,IANAV (115) 03740000
C 0375C000

C Control switches for numerical short-periodics used 03760003
C in computing second-order mean element rates. 0377C003
C 03180000

EQUIVALENCE (JSPJ2 ,IANAV (116) ),03790000
* (JSPDRG ,IANAV (117) 03800000

C 03810000

C Output options. 03820003
C 03830000

EQUIVALENCE (IORBIT ,IANAV (174) 03840000
C 03850000
C /SPINTG/ ......*****************************************0 3860000
C 03870000

COMMON /SPINTG/ ISPINT(181) 03880000
C 03890000
C Position and velocity interpolator. 03900003
C C (9 002

EQUIVALENCE (INTPOS ,ISPINT (1) , 03920Jt
* (NPTPOS ,ISPINT (2) ) >iiA002M

C63394' 0
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C Coefficient interpolator. 03950003
C 03960000

EQUIVALENCE (INTCOF ,ISPINT (6) ),03970000
S(NPTCOF ,ISPINT (7) 03980000

C 03990000
C Gravitational perturbations. 04000003
C 04010000

EQUIVALENCE (ISPBOD (1) ,ISPINT (14) 04020000
EQUIVALENCE (IZONAL ISPINT (23) (,04030000

* (IMDALY ISPINT (24) ),04040000
* (ITESS ISPINT (25) ),04050000
* (ITHIRD ISPINT (26) ),04060000
* (IJ2J2 ISPINT (27) ),04070000
* (IJ2MD ISPINT (174) 04080000

C 04090000
C Central body zonal harmonics. 04100003
C 04110000

EQUIVALENCE (NZN ,ISPINT (28) ),04120000
* (LZN ,ISPINT (29) ),04130000
* (JZN ,ISPINT (30) ),04140000
* (ITDZN ,ISPINT (31) ),04150000

* (NTDZN ,ISPINT (32) 04160C0C

C 04170000
C Central body m-daily tesserai harmonics. 04180003
C 04190000

EQUIVALENCE (NMD ISPINT (33) ),04200000
* (MMD ISPINT (34) ),04210000
* (LMD ISPINT (35) ),04220000
* (KMD ISPINT (36) ),0423C000
* (ITDMD ISPINT (37) (,04240000
* (NTDMD ISPINT (38) 04250000

C 04260000
C Central body J2 / m-daily coupling. 04270003
C 042800CC

EQUIVALENCE (NJ2MD ,ISPINT (171) ),04290000
" (MJ2MD ,ISPINT (172) (,04300C0C
* (LJ2MD ,ISPINT (173) ),04310000
" (IDRMD ,ISPINT (175) 04320000

C 04330003
C Central body high-frequency tesseral harmonics. 04340003
C 04350000

EQUIVALENCE (NTS ISPINT (39) ),04360000
* (MTS ISPINT (40) ),04370000
* (LTS ISPINT (41) ),04380000
* LTSHAN ISPINT (181) ),04390003
* (KTS ISPINT (42) ).04400000
* (JMINTS ISPINT (43) ),04410000
* (JMAXTS ISPINT (44) (,04420000

(ITDTS ISPINT (45) (,04430000
* (NTDTS ISPINT (46) 04440000

C 04450000
C Third bodies. 04460003
C 04470000

EQUIVALENCE (NANGTH (1) ISPINT (47) (,04480000
" (NTH (1) ISPINT (55) (.04490000
* (MMONTH (1) ISPINT (63) ),04500000
* (MTESTH (1) ISPINT (71) ).045:000C

" (LTH (1? ISPINT (79) ),04520000
* (LEPRTH (1) ISPINT (87) ),04530000
* (KTH (1) ISPINT (95) 04540000
* (JMINTH (1) ISPINT (103) 0455000C
* (JMAXTH (1) ISPINT (111) ?456ccc?

* (ITDTH (1) ISPINT (119)

"(NTDTH (1) ISPINT (127) O458083Y
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C 04590000

C Numerical short-periodic coefficients. 04600003
C 04610000

EQUIVALENCE (IGRAV ISPINT (135) ),04620000
* (IDRAG ISPINT (136) ),04630000
* (ISOLAR ISPINT (137) ) 04640000

EQUIVALENCE (NGRAV ISPINT (138) ),04650000
* (NDRAG ISPINT (139) ),04660000
* (NSOLAR ISPINT (140) ) 04670000

EQUIVALENCE (LGRAV ISPINT (168) ),04680000
* (LDRAG ISPINT (169) ),04690000

* (LSOLAR ISPINT (170) ) 04700000

EQUIVALENCE (JGRAV ISPINT (141) ),04710000
* (JDRAG ISPINT (142) ),04720000

* (JSOLAR ISPINT (143) ) 04730000

EQUIVALENCE (IDGRAV ISPINT (144) ),04740000
* (IDDRAG ISPINT (145) ),04750000
* (IDSOLR ,ISPINT (146) ) 04760000

EQUIVALENCE (NDGRAV ,ISPINT (147) ),04770000
S(NDDRAG *ISPINT (148) ),04780000
S(NDSOLR ,ISPINT (149) 04790000

C 04800000

C Print options. 04810003
C 04820000

EQUIVALENCE (KINTPV ,ISPINT (155) ),04830000
S(KINTCF ,ISPINT (156) ),04840000
S(KSP ,ISPINT (157) ),04850000
S(KSPCF ,ISPINT (158) ) 04860000

C 04870000

C 04980000
C /SWITCH/ .** **************** ***** *****04990000

C 0500000C

COMMON /SWITCH/ ISWIT(230) 05C0000
EQUIVALENCE (IBODY (1) ,ISWIT (201) ),0502000C

* (INDEG ,ISWIT (221) ),05030000
* (INORD ,ISWIT (222) ) 05040000

C 05050000

C /THRRES/ * * ***** ** ** t **'******'*'*'05060000

C C5070000

COMMON /THRRES/ ISRES (20,2) ,ITRES (20,2) ,05080000
* NUMRES (2) 05090000

C 05100000

C 05110000

C 05120000

Cttttt*tttttt*tttt BEGIN PROGRAM ta**** ****** ****** **************05130000

C 05140000

C 05250000

C 05160000

C **********05;10000

C AVERAGED EQUATIONS OF MOTION 05180000

C **t***'*at*a**ataa*at*t 05190000

C 05200000

C 05210000

C 05220000

C ******** SMALL PERTURBATIONS* ******tat 05230000

C 05240000

C Second-order drag effects in the averaged equations 05250003
C of motion. 05260003
C 05210000

IDRDR = 0 0528000C
JSPJ2 = 4 05290CC C

JSPDRG 4 Ct.

C
C Earth tides model.
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C 05330000
ITIDE (1) = 2 05340000
ITIDE (2) = 2 05350000
ITIDE (3) = 2 05360000

C 05370000
C 05380000
C 05390000
C THIRD-BODY .......... 05400000
C DOUBLE AVERAGING 05410000
C 05420000
C If both lunar and solar perturbations are on, the 05430003
C first elements of IANGTH...... ISMIN are for 05440003
C the Moon and the second elements are for for the 05450003
C Sun. If the NCBODY card is used in the control 05460003
C deck, care should be exercised in setting these 05470003
C indicators. 05480003
C 05490000
C 05500000
C 05510000
C Third-body analytical averaging theory. 05520003
C 05530000

IANGTH (1) 1 05540000

IANGTH (2) = 1 05550000
C 05560000
C Maximum powers of a/r or a/a'. 05570003
C 05580000

IF (IANGTH (1) .EQ. 2) NENDTH (1) = 8 05590000
IF (IANGTH (2) .EQ. 2) NENDTH (2) = 4 05600000

C 05610000
C Maximum powers of e. 05620003
C 05630000

IF (IANGTH (1) .EQ. 2) MENDTH (1) 4 05640000
IF (IANGTH (2) .EQ. 2) MENDTH (2) = 4 05650000

C 05660000
C Maximum powers of e'. 05670003
C 05680000

IRSTAR (1) = 1 0569000C
IRSTAR (2) = 1 05700000

C 05710000
C Maximum and minimum multiples of lambda for 05720003
C resonance. 05730003
C 05740000

ITMAX (1) = 0 05750000
ITMIN (1) = 0 05760000

C 05770000
ITMAX (2) = 0 05780000

ITMIN (2) = 0 05790000
C 05800000
C Maximum and minimum multiples of lambda' for 05810003
C resonance. 05820003
C 05830000

ISMAX (1) 0 05840000

ISMIN (1) 0 05850000
C 05860000

ISMAX (2) 0 05870000
ISMIN (2) 0 05880000

C 05890000
C Third-body resonance frequencies. 05900003
C 05910000

NUMRES (1) 0 0D92003•
NUMRES (2) 0 05930C00

C 05~94002 C

C Method for computing third-body Hansen coo! ! .c- 2 C_

C
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IRFLAG = 2 05970000

C 05980000
C Method for computing satellite Hansen coefficients. 05990004
C 06000000

IMFLAG = 2 06010000

C 06020000
C Third-body emphemeris flag. 06030003

C 06040000
IPOSDL = 2 06050000

C 06060000
C 06070000

C 06080000
C - OUTPUT OPTIONS 06090000
C 06100000

C Semianalytic orbit file. 06110003
C 06120000

IORBIT 2 06130000

C 06140000
C 06150000
C 06160000
C ** 06170000

C SHORT-PERIODIC OPTIONS 06180000
C 06190000
C 06200000
C 06210000
C 06220000
C Position and velocity interpolator. 06230003
C 06240000

INTPOS = 2 06250000

NPTPOS = 3 06260000

PVSTEP = 120. DO 06270000
C 06280000
C Short-periodic coefficient interpolator. 06290003
C 06300000

INTCOF = 1 06310000

NPTCOF = 3 06320000

SPSTEP = 86400. DO 06330000
C 06340000
C Short-periodic perturbations. 06350003
C 06360000

IZONAL = 1 06370000

IMDALY = 1 0638000C

ITESS = 1 0639000C

ITHIRD = 1 06400000

IJ2J2 = 1 0641000C

IJ2MD = 1 06420000

C 06430000

C Third bodies causing short-periodic perturbations. 06440003

C 06450000
ISPBOD (1) = IBODY (1) 06460000
ISPBOD (2) = IBODY (2) 06470000
ISPBOD (3) = IBODY (3) 06460000

ISPBOD (4) IBODY (4) 06490000
ISPBOD (5) = IBODY (5) 06500000
ISPBOD (6) = IBODY (6) 06510000
ISPBOD (7) IBODY (7) 06520000
ISPBOD (8) IBODY (8) 06530000

ISPBOD (9) IBODY (9) 06540000
C 06550000

C 06560000

C 06570000

C * .*********************** ** 06580000

C ANALYTICAL CENTRAL-BODY SHORT-PERIODICS 06590000

C *062CCCCC
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C 06610000
C 06620000

C 06630000
C ******* ZONALS 06640000
C 06650000

C NZN GE 2 NZN LE NUMCOF
C LZN GE 0 LZN LE NZN - 1 06670000

C JZN GE 1 JZN LE 2'NZN + 1 06680000

C 06690000
C .................. 06700005
C NZN = INDEG 06710005

C LZN = NZN - 1 06720005
C JZN 2 * NZN + 1 06730005

C ITDZN = 2 06740005

C NTDZN = 0 06750005
C ............. 06760005

NZN = INDEG 06770005
LZN = NZN - 1 06780005
JZN = 2 * NZN + 1 06790005

ITDZN = 2 06800005

NTDZN = 0 06810005
C 06820000

C 0683000C

C 06840000
C * M-DAILIES 06850000

C 06860000
C First Order 06870003

C 06880000

C NMD GE 2 NMD LE NUMCOF
C MMD GE 1 MMD LE NMD 06900000

C LMD GE 0 LMD LE NMD - 2 06910000

C 06920000
C ---------------------------- 06930005
C NMD = INDEG 06940005

C MMD = INORD 06950005

C LMD = NMD - 2 06960005
C ITDMD = 2 06970005

C NTDMD = 0 06980005

C ---------------------------- 06990005
NMD = INDEG 07000005

MMD = INORD 07010005

LMD = NMD - 2 07020005

ITDMD = 2 07030005
NTDMD = 0 07040005

C 070500CC

C J2 / M-daily Coupling 07060003
C 07070000

C NJ2MD GE 2 NJ2MD LE NUMCOF

C MJ2MD GE 1 MJ2MD LE NMD 07090000

C LJ2MD GE 0 LJ2MD LE NMD - 2 0/10000C

C 011000C

C ------------------------------ 07120005
C NJ2MD = NMD 07130005

C MJ2MD = MMD 07140005
C LJ2MD = NJ2MD - 2 07150005

C IDRMD = 1 07160005

C ------------------------------ 07170005
NJ2MD = NMD 07180005

MJ2MD = MMD 07190005

LJ2MD NJ2MD - 2 07200005
IDRMD = 1 072?0005

C 0722D0OC

C 07230000
C 01240000
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C .... TESSERALS 07250000
C 07260000
C ----- WARNING! ------ If the eccentricity of the 07270003
C satellite orbit is large, then the terms of the power07280003
C series expansion for a given Hansen coefficient 07290003
C increase rapidly for a while, reach a maximum, and 07300003
C then begin to decrease, eventually becoming smaller 07310003
C than the Hansen coefficient itself. The first term 07320003
C in the decreasing part of the expansion which is 07330003
C smaller than the Hansen coefficient itself marks the 07340003
C onset of convergence, and the exponent of e**2 in 07350003
C this term can be called the "convergence index". 07360003
C 07370003
C The value of "LTSHAN" must be greater than the 07380003
C convergence index of each Hansen coefficient in the 07390003
C high-frequency tesseral short-periodic model. If 07400003
C "LTSHAN" is smaller than the biggest convergence 07410003
C index, then the error in the high-frequency tesseral 07420003
C short-periodic variations will be bigger than the 07430003
C short-periodics themselves. If "LTSHAN" is 07440003
C significantly smaller, then the error may be many 07450003
C orders of magnitude bigger than the short-periodics. 07460003
C If "LTSHAN" is not significantly bigger, then the 07470003
C short-periodics will have no significant figures of 07480003
C accuracy. 07490003
C 07500003

C NTS 2 to NUMCOF
C MTS 1 to NTS 07520003
C LTS 0 to unknown 07530003
C LTSHAN 0 to unknown 07540003
C JMINTS - NTS - LTS to JMAXTS 07550003

C JMAXTS JMINTS to NTS + LTS 07560003

C 07570003

C 07580003

C 07590003

C ----------------------------------- 07600005

C NTS INDEG 07610005

C MTS INORD 07620005

C LTS = 4 07630005

C LTSHAN 2 07640005
C JMINTS - NTS - LTS 07650005

C JMAXTS NTS + LTS 07660005

C ITDTS 2 07670005

C NTDTS 0 07680005

C .......... 07690005
NTS INDEG O

MTS INORD 07710005

LTS 4 07720005

LTSHAN = 2 07730005

JMINTS = - NTS - LTS 07740005

JMAXTS = NTS + LTS 07750005

ITDTS 2 07760005

NTDTS = 0 07770005

C 07780000

C 07790000

C 07800000

C ************************************ 07810000

C ANALYTICAL THIRD-BODY SHORT-PERIODICS 07820000

C **********************. 07830000

C 07840000
C 0785000C

C 0786000C

C MOON * 0787000C

C C1880000
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C Single or double averaging? 07890003
C 07900000

NANGTH (1) = 1 07910000
C 07920000
C Single ..... 07930003

C 07940000
C NTH 2 to 20 07950002
C JMAXTH 1 to NTH + 1 07960001
C LTH 0 to NTH + JMAXTH 07970001
C 07980000

IF (NANGTH (1) .EQ. 1) THEN 07990000
C ------------------------------------------------- 08000005
C NTH (1) = 8 08010005
C JMAXTH (1) = NTH (1) + 1 08020005

C LTH (1) = NTH (1) + JMAXTH (1) 08030005

C ITDTH (1) = 2 08040005
C NTDTH (1) = 0 08050005
C ------------------------------------------------- 08060005

NTH (1) = 8 08070005
JMAXTH (1) = NTH (1) + 1 08080005

LTH (1) NTH (1) + JMAXTH (1) 08090005
ITDTH (1) = 2 08100005
NTDTH (1) = 0 08110005

C 08120000
C Double ..... 08130003

C 08140000
C NTH GE 2 NTH LE 21 08150000
C MMONTH GE 0 MMONTH LE NTH 08160000
C MTESTH GE 0 MTESTH LE NTH 08170000
C LTH GE 0 LTH LE 20 08180000
C LEPRTH GE 0 LEPRTH LE i0 08190000
C JMINTH LE JMAXTH 08200000
C 08210000

ELSE 08220000
C -------------------------------------------------- 08230005
C NTH (1) = 8 08240005
C LTH (1) = 4 08250005
C MMONTH (1) = NTH (1) 08260005
C MTESTH (1) = NTH (1) 08270005
C LEPRTH (1) = 2 08280005
C JMINTH (1) = NTH (1) LTH (1) 08290005
C JMAXTH (1) = NTH () + LT (1) 08300005
C ITDTH (1) = 2 08310005

C NTDTH (1) = 0 08320005
C -------------------------------------------------- 08330005

NTH (1) = 8 08340005
LTH (1) = 4 08350005
MMONTH () = NTH (1) 08360005
MTESTH (1) = NTH (1) 08370005
LEPRTH (1) = 2 08380005
JMINTH (1) - NTH (1) - LTH (1) 08390005
JMAXTH (1) = NTH (1) + LTH (1) 08400005
ITDTH (1) = 2 08410005
NTDTH (1) = 0 08420005

END IF 08430000
C 08440000
C 08450000
C 08460000

C ******** SUN * 08470000

C 08480000
C Single or double averaging? 08490003
C 08500000

NANGTH (2) = 1 085 00
C 08520000

270



C Single 08530003

C 08540000
C NTH 2 to 20 08550002
C JMAXTH 1 to NTH + 1 08560001
C LTH 0 to NTH + JMAXTH 08570001
C 08580001

IF (NANGTH (2) .EQ. 1) THEN 08590000
C ------------------------------------------------- 08600005
C NTH (2) = 4 08610005
C JMAXTH (2) = NTH (2) + 1 08620005
C LTH (2) = NTH (2) + JMAXTH (2) 08630005
C ITDTH (2) = 2 08640005
C NTDTH (2) = 0 08650005
C ------------------------------------------------- 08660005

NTH (2) = 4 08670005
JMAXTH (2) = NTH (2) + 1 08680005

LTH (2) = NTH (2) + JMAXTH (2) 08690005
ITDTH (2) = 2 08700005
NTDTH (2) = 0 08710005

C 08720000
C Double 08730003

C 08740000

C NTH GE 2 NTH LE 21 08750000

C MMONTH GE 0 MMONTH LE NTH 08760000
C MTESTH GE 0 MTESTH LE NTH 0877000C
C LTH GE 0 LTH LE 20 08780000
C LEPRTH GE 0 LEPRTH LE 10 08790000
C JMINTH LE JMAXTH 08800000
C 08810000

ELSE 0882000C

C -------------------------------------------------- 0883000b

C NTH (2) = 4 08840005
C LTH (2) = 4 08850005
C MMONTH (2) = NTH (2) 08860005
C MTESTH (2) = NTH (2) 08870005

C LEPRTH (2) = 2 08880005
C JMINTH (2) = - NTH (2) - LTH (2) 08890005

C JMAXTH (2) = NTH (2) + LTH (2) 08900005

C ITDTH (2) = 2 08910005
C NTDTH (2) = 0 08920005

C -------------------------------------------------- 08930005
NTH (2) = 4 08940005
LTH (2) 4 08950005

MMONTH (2) = NTH (2) 08960005

MTESTH (2) = NTH (2) 08970005
LEPRTH (2) = 2 08980005

JMINTH (2) = - NTH (2) - LTH (2) 08990005

JMAXTH (2) = NTH (2) + LTH (2) 09000005

ITDTH (2) 2 09010005

NTDTH (2) 0 09020005

END IF 09030000
C 09040000

C 09050000

C 09060000
C " PLANETS ***'*** 09070000

C 09080000
C ..... Single Averaging ..... 090900C3
C 09100000
C NTH 2 to 20 09110002

C JMAXTH I to NTH + 1 09!2000:

C LTH 0 to NTH + JMAXTH 0913000:

C 09140000

DO 350 I = 3,8 09150000

C ------------------------------------------------- 09160005
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C NANGTH (I) 1 09170005

C NTH (I) 2 09180005

C JMAXTH (I) NTH (I) + 1 09190005

C LTH (I) NTH (I) + JMAXTH (1) 09200005

C ITDTH (I) 2 09210005

C NTDTH (I) 0 09220005
C ------------------------------------------------- 09230005

NANGTH (I) = 1 09240005
NTH (I) = 2 09250005
JMAXTH (I) = NTH (I) + 1 09260005

LTH (I) NTH (I) + JMAXTH (I) 09270005
ITDTH (I) 2 09280005
NTDTH (I) 0 09290005

350 CONTINUE 09300000
C 09310000
C 09320000
C 09330000

C *******''************ 09340000

C NUMERICAL SHORT-PERIODICS 09350000

C ******************** 09360000

C 09370000

C 09380000

C 09390000

C Quadrature order control switches. 0940000C
C 09410000
C ------ 09420005
C IDRAG IDRGAV 09430005
C ISOLAR = ISLRAV 09440005
C ....... 09450005

IDRAG IDRGAV 09460005
ISOLAR = ISLRAV 09470005

C 09480000
C Quadrature order switches. 09490003
C 0950000C
C ------------------- 09510005
C NGRAV = 7 09520005

C NDRAG = 7 09530005

C NSOLAR = 7 09540005
C ------------------- 09550005

NGRAV = 7 09560005

NDRAG = 7 09570005

NSOLAR 7 09580005
C 09590000
C Short-periodic expansion longitudes. 09600003
C 09610000
C ------------------- 09620005
C LGRAV = 1 09630005
C LDRAG = 1 09640005
C LSOLAR = 1 09650005
C ------------------- 09660005

LGRAV = 1 09610005
LDRAG = 1 09680005

LSOLAR = 1 09690005

C 0 9 /00 000.

C Maximum frequencies. 
0 9 71'

0 03

C 09720000

C ------------------- 09130005
C JGRAV 6 09740005
C JDRAG = 6 09750005
C JSOLAR = 6 09760005
C ...... 09770005

JGRAV = 6 09780005

JDRAG = 6 091900z

JSOLAR = 6 09800005
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C 09810000
C 09820000

C 09830000
C 09840000
C WEAK TIME-DEPENDENCE CORRECTIONS 09850000
C ...... *.*****tt**** 09860000

C 09870000
C 09880000
C 09890000
C Methods of computing time derivatives. 09900003
C 09910000

IDGRAV = 2 09920000

IDDRAG = 2 09930000

IDSOLR = 2 09940000

C 09950000
C Order of highest time derivative. 09960003
C 09970000

NDGRAV = 0 09980005

NDDRAG = 0 09990005

NDSOLR = 0 10000005

C 10010000
C Finite-difference time steps for analytical 10020003
C short-periodics. (not implemented) 10030003
C 10040000

DTCENT = 21600. DO 10050000
DTTHIR (1) 3600. DO 10060000
DTTHIR (2) = 21600. DO 10070000
DTTHIR (3) = 21600. DO 10080000
DTTHIR (4) = 21600. DO 10090000
DTTHIR (5) = 21600. DO 10100000

DTTHIR (6) = 21600. DO 10110000
DTTHIR (7) = 21600. DO 10120000
DTTHIR (8) = 21600. DO 10130000

C 0140000
C Finite-difference time steps for numericai .01b0003
C short-periodics. 10160003

C 10170000

C --------------------------- 10180005

C DTGRAV = 3600. DO 10190005
C DTDRAG = 43200. DO 10200005
C DTSOLR 43200. DO 10210005
C --------------------------- 10220005

DTGRAV = 3600. DO 10230005
DTDRAG = 43200. DO 10240005
DTSOLR = 43200. DO 10250005

C 10260000

C 10270000
C 10280000

C 10290000
C OUTPUT OPTIONS 10300000

C "* .***. 10310000
C 10320000
C 10330000
C 10340000

KINTPV = 2 10350000

KINTCF 2 10360000

KSP 2 10370000

KSPCF 2 10380000

C 10390Coc
C i0400000
C 110410000

C O'0200

C THIRD-BODY NEWCOMB OPERATORS 30302

C *'4400oc;
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C 10450000
C 104b0000

C 10470000
CALL ASSGN 10480000

RETURN 10490000

END 10500000

C

C

C ( /common/ SPREAL

C ( rev 1 2/11/93 by djf

C
C

C

C This common replaces SPREALBD.FOR
C written by Leo Early. It contains

C variables used by the short-periodic

C generator. The short-periodic generator

C is used by the semianalytic orbit

C generator.

C
C
C

C

C**i**********'*** TABLE OF CONTENTS .
C

C
C

C VARI- DIMEN-
C ABLE SION DESCRIPTION

C
C

C POSITION AND VELOCITY INTERPOLATOR.
C

C PVSTEP 1 INTERVAL BETWEEN SUCCESSIVE INTERPOLATOR

C POINTS.
C
C PVBEG 1 BEGINNING OF INTERPOLATION INTERVAL.

C PVEND 1 END OF INTERPOLATION INTERVAL.

C PVCEN 1 CENTER OF INTERPOLATION INTERVAL.

C PVWID 1 HALF-WIDTH OF INTERPOLATION INTERVAL.

C
C PCOEF (3,6) INTERPOLATOR COEFFICIENTS FOR POSITION.
C VCOEF (3,6) INTERPOLATOR COEFFICIENTS FOR VELOCITY.

C
C SHORT-PERIODIC VARIATIONS.

C
C DA 1 VARIATION IN SEMIMAJOR AXIS.

C DH 1 VARIATION IN H.

C DK 1 VARIATION IN K.
C DP 1 VARIATION IN P.

C DQ 1 VARIATION IN Q.

C DLAM 1 VARIATION IN LAMBDA.
C

C SHORT-PERIODIC PHASE ANGLES.

C
C XL 1 TRUE LONGITUDE OF SATELLITE.
C XF 1 ECCENTRIC LONGITUDE OF SATELLITE.

C XLAMDA I MEAN LONGITUDE OF SATELLITE.

C THETA 9 MEAN LONGITUDES OF PERTURBING BODIES.

C (1) CENTRAL BODY PRIME MERIDIAN
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C (2-9) THIRD BODIES

C ANGVEL 9 ANGULAR VELOCITIES OF PERTURBING BODIES

C ABOUT THE ORIGIN OF THE COORDINATE SYSTEM.

C
C TIME STEPS FOR NUMERICAL TIME DERIVATIVES USED TO COMPUTE

C TIME-DEPENDENT SHORT-PERIODIC COEFFICIENTS.

c
C DTCENT 1 TIME STEP FOR ANALYTICAL CENTRAL-BODY
C SPHERICAL HARMONIC MODEL.

C DTTHIR 8 TIME STEPS FOR ANALYTICAL THIRD-BODY

C MODELS.
C
C DTGRAV 1 TIME STEP FOR NUMERICAL GRAVITATIONAL

C PERTURBATION MODEL.

C DTDRAG 1 TIME STEP FOR ATMOSPHERIC DRAG.
C DTSOLR I TIME STEP FOR SOLAR RADIATION PRESSURE.

C
C SHORT-PERIODIC COEFFICIENTS.
C
C CTRUE * COEFFICIENTS OF TRUE LONGITUDF FXPANSTON.

C STRUE

C
C CECCEN COEFFICIENTS OF ECCENTRIC LONGITUDE EXPAN-

C SECCEN SION.
C
C CLAMDA * COEFFICIENTS OF MEAN LONGITUDE EXPANSION.

C SLAMDA
C
C CTHETA * COEFFICIENTS OF THETA EXPANSIONS.
C STHETA **

C
C CDOUBL * COEFFICIENTS OF LAMBDA-THETA DOUBLE EXPAN-

C SDOUBL * SIONS.

C
C CCOEF * COEFFICIENTS TO BE ADDED INTO ONE OF THE

C SCOEF *** SINGLE-ANGLE EXPANSIONS.
C
C SHORT-PERIODIC COEFFICIENT INTERPOLATOR.

C
C SPSTEP 1 INTERVAL BETWEEN SUCCESSIVE INTERPOLATOR

C POINTS.
C
C SPBEG 1 BEGINNING OF INTERPOLATION INTERVAL.
C SPEND 1 END OF INTERPOLATION INTERVAL.

C SPCEN 1 CENTER OF INTERPOLATION INTERVAL.

C SPWID 1 HALF-WIDTH OF INTERPOLATION INTERVAL.
C
C CFCTRU * INTERPOLATOR COEFFICIENTS FOR TRUE LONGI-

C CFSTRU '** TUDE EXPANSION.

C
C CFCECC * INTERPOLATOR COEFFICIENTS FOR ECCENTRTC

C CFSECC ** LONGITUDE EXPANSION.

C
C CFCLAM * INTERPOLATOR COEFFICIENTS FOR MEAN LONGI-
C CFSLAM * TUDE EXPANSION.

C
C CFCTHT *** INTERPOLATOR COEFFICIENTS FOR THETA EXPAN-
C CFSTHT SIONS.
C
C CFCDBL * INTERPOLATOR COEFFICIENTS FOR LAMBDA-

C CFSDBL " THETA DOUBLE EXPANSIONS.
C
C SHORT-PERIODIC PHASE ANGLE INTERPOLATOR.

C
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C THCOEF 36 INTERPOLATOR COEFFICIENTS FOR PERTURBING-

C BODY PHASE ANGLES.

C
C UNITS ARE KILOMETERS, SECONDS, AND RADIANS.

C

C

C * SEE PARAMETER AND DIMENSION STATEMENTS WHICH FOLLOW

C

C
C

C Data Types----------------------------------------------------....

C

C
C Position and velocity interpolator.

C
DOUBLE PRECISION PVSTEP
DOUBLE PRECISION PVBEG
DOUBLE PRECISION PVEND
DOUBLE PRECISION PVCEN
DOUBLE PRECISION PVWID

DOUBLE PRECISION PCOEF

DOUBLE PRECISION VCOEF

C

C Short-periodic variations.
C

DOUBLE PRECISION SPVAR
DOUBLE PRECISION DA
DOUBLE PRECISION DH

DOUBLE PRECISION DK
DOUBLE PRECISION DP
DOUBLE PRECISION DQ

DOUBLE PRECISION DLAM

C
C Short-periodic phase angles.

C
DOUBLE PRECISION XL
DOUBLE PRECISION XF

DOUBLE PRECISION XLAMDA

DOUBLE PRECISION THETA
DOUBLE PRECISION ANGVEL

C

C Time steps for numerical time derivatives.
C

DOUBLE PRECISION DTCENT
DOUBLE PRECISION DTTHIR
DOUBLE PRECISION DTGRAV
DOUBLE PRECISION DTDRAG

DOUBLE PRECISION DTSOLR

C

C Short-periodic coefficients.

C
DOUBLE PRECISION CTRUE
DOUBLE PRECISION STRUE
DOUBLE PRECISION CECCEN
DOUBLE PRECISION SECCEN

DOUBLE PRECISION CLAMDA

DOUBLE PRECISION SLAMDA

DOUBLE PRECISION CTHETA

DOUBLE PRECISION STHETA

DOUBLE PRECISION CDOUBL
DOUBLE PRECISION SDOUBL

DOUBLE PRECISION CCOEF
DOUBLE PRECISION SCOEF

C
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C Short-periodic coefficient interpolator.
C

DOUBLE PRECISION SPSTEP
C

DOUBLE PRECISION SPBEG

DOUBLE PRECISION SPEND
DOUBLE PRECISION SPCEN

DOUBLE PRECISION SPWID
C

DOUBLE PRECISION CFCTRU

DOUBLE PRECISION CFSTRU
DOUBLE PRECISION CFCECC

DOUBLE PRECISION CFSECC
DOUBLE PRECISION CFCLAM

DOUBLE PRECISION CFSLAM
DOUBLE PRECISION CFCTHT
DOUBLE PRECISION CFSTHT
DOUBLE PRECISION CFCDBL
DOUBLE PRECISION CFSDBL

C
C Short-periodic phase angle interpolator.
C

DOUBLE PRECISION THCOEF
C
C
C

INTEGER FLDDIM

INTEGER ECCNUV
INTEGER TFDPL2
INTEGER FDMINi
INTEGER TFDMI2
INTEGER DUBNUM
INTEGER SPINCI
INTEGER SPINC2
INTEGER SPINC3
INTEGER SPINC4

C
C
C Parameter Statements
C

PARAMETER (FLDDIM = 50)
PARAMETER (ECCNUM = 4)
PARAMETER (TFDPL2 = (2 FLDDIM + 2))

PARAMETER (FDMIN1 = (FLDDIM - 1))

PARAMETER (TFDMI2 = (2 * FLDDIM - 2))

PARAMETER (DUBNUM = (FLDDIM*(2*(FLDDIM+ECCNUM)+I)))
PARAMETER (SPINCI = (4*6*TFDPL2))
PARAMETER (SPINC2 = (4*6*FDMIN1))
PARAMETER (SPINC3 = (46TFDM12))
PARAMETER (SPINC4 = (4*6*DUBNUM))

C
C
C Dimensions . . . . . . . . . . . . . . . . . . . . ..

C
C Short-periodic variations.
C

DIMENSION PCOEF(3,6) ,VCOEF(3,6) ,SPVAR(6) ,DTTHIR(8)
DIMENSION THETA(9) ,ANGVEL(9) ,THCOEF(36)

C
C Short periodic coefficienLs.
C

DIMENSION CTRUE (6,TFDPL2) ,STRUE (6,TFDPL2

DIMENSION CECCEN (6,TFDPL2) ,SECCEN (6,TFDPL2
DIMENSION CLAMDA (6,FDMINI) ,SLAMDA (6,FDMIN')
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DIMENSION CTHETA (6,TFDMI2) ,STHETA (6,TFDMI2)
DIMENSION CDOUBL (6,DUBNUM) ,SDOUBL (6,DUBNUM)
DIMENSION CCOEF (6,TFDPL2) ,SCOEF (6,TFDPL2)

C
C Short-periodic coefficient interpolators.
C

DIMENSION CFCTRU (SPINCI) ,CFSTRU (SPINCi)
DIMENSION CFCECC (SPINCI) ,CFSECC (SPINCI)
DIMENSION CFCLAM (SPINC2) ,CFSLAM (SPINC2)
DIMENSION CFCTHT (SPINC3) ,CFSTHT (SPINC3)
DIMENSION CFCDBL (SPINC4) ,CFSDBL (SPINC4)

C
C
C Common Block----------------------------------------------.......
C
C
C
C
C Position and velocity interpolator.
C

COMMON /SPREAL/ PVSTEP
COMMON /SPREAL/ PVBEG
COMMON /SPREAL/ PVEND
COMMON /SPREAL/ PVCEN
COMMON /SPREAL/ PVWID
COMMON /SPREAL/ PCOEF
COMMON /SPREAL/ VCOEF

C
C Short-periodic variations.
C

COMMON /SPREAL/ SPVAR
C
C
C Short-periodic phase angles.
C

COMMON /SPREAL/ XL
COMMON /SPREAL/ XF
COMMON /SPREAL/ XLAMDA
COMMON /SPREAL/ THETA
COMMON /SPREAL/ ANGVEL

C
C Time steps for numerical time derivatives.
C

COMMON /SPREAL/ DTCENT
COMMON /SPREAL/ DTTHIR
COMMON /SPREAL/ DTGRAV
COMMON /SPREAL/ DTDRAG
COMMON /SPREAL/ DTSOLR

C
C Short-periodic coefficients.
C

COMMON /SPREAL/ CTRUE
COMMON /SPREAL/ STRUE
COMMON /SPREAL/ CECCEN
COMMON /SPREAL/ SECCEN
COMMON /SPREAL/ CLAMDA
COMMON /SPREAL/ SLAMDA
COMMON /SPREAL/ CTHETA
COMMON /SPREAL/ STHETA
COMMON /SPREAL/ CDOUBL
COMMON /SPREAL/ SDOUBL
COMMON /SPREAL/ CCOEF
COMMON /SPREAL/ SCOEF

C
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C Short-periodic coefficient interpolator.

C
COMMON /SPREAL/ SPSTEP

C
COMMON /SPREAL/ SPBEG

COMMON /SPREAL/ SPEND

COMMON /SPREAL/ SPCEN

COMMON /SPREAL/ SPWID

C
COMMON /SPREAL/ CFCTRU
COMMON /SPREAL/ CFSTRU

COMMON /SPREAL/ CFCECC

COMMON /SPREAL/ CFSECC

COMMON /SPREAL/ CFCLAM

COMMON /SPREAL/ CFSLAM

COMMON /SPREAL/ CFCTHT

COMMON /SPREAL/ CFSTHT

COMMON /SPREAL/ CFCDBL
COMMON /SPREAL/ CFSDBL

C
C Short-periodic phase angle interpolator.
C

COMMON /SPREAL/ THCOýF

C
C
C
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Appendix C

Output Plots

C.1 Description

As described in Chapter 5, Appendix C contains output plots corresponding to a fit of

GEMT3 21x21 AOG to 50x50 AOG for the DMSP study orbit. As expected, the results of

this test show that significant errors resulted from the 21 x21 fit:

POSITION RMS VELOCITY RMS

(km) (km/sec)

RADIAL 3.3576D-02 1.6680D-03
CROSS TRACK 1.7800D-02 1.6002D-05
ALONG TRACK 1.6392D+00 3.4504D-05
TOTAL 1.6396D+00 1.6684D-03

Figure C.1 Recap of Figure 5.17

The first set of plots, which incorporate a normal value for J2 , contain a visible 60 day

signature:
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POSITION DIFFEIRNCE SATELLITE WMSPBL-6 1234567
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0 1 0

2 0.00

L 1 1

I I

0 1 I

60.00
F I " ".*

II I

20 10 . 1 20.01 1 *

C II

TIM IRC .YMr .MMS IN

SI * 1

2220.00
NI • * I

H T * D 1
£ 18 I
T 0. .
£ I * *

$ I 1
I * *

-20.00 .

I * 1
I *** *I

-40.00

1 * *" I

I [
-40.00 .

0. 20.00 40.00 40.00 80.00 100.0 120.0 140.0 160.0 160.0 200.0
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820222 0

CI7AVAILABLE TO DTIO DOES NOT PERMI FULLY' LEGIBLE rc:?¶CDJCT6ION
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..... POITION DIFFERENCE SATELLITE DISPBL-6 1234567
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..... PoSmToiN oi'FRtNCE SATEL.LITE C10PBL-6 1234567
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A
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N 2.000

c I !
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K
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N 2.000 0
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Z -1.000
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COPY AVAILABLE TO DTIC DOF.3 1'TCT FiP .MIiT rULLY L•.,... .... ; ll 2JL.C IO;10
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KULLRIAH ZLL.ZrWT RISTOILS SATELLITE D0$PBL-6 1234567
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aEPrtAlIs EtLEMNT HISTORIES SATELLITE WISPSL-6 1234567
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XPLEP IAN ELEMENT HISORIES SATELLITE WSPBL-6 1234561
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NZLERIAN tLEMNL" DIFFEUXNCLS SATELLITE DMSPBL-6 1234567
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KEPLERIAN ELEMENT DIFFERENCES SATELLITE O4SPBL-6 1234567
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KEPL•RIAN ELMENT DIFFRENEICES SATELLITE DI4SPSL-6 1234567
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PEPLERIAN ELEMENT DIFFERENCES SATELLITE m4SPBL-6 1234567
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KE•LEIAN ELEIMENT OIFFERENCES SATELLITE QMSPBL-6 1234561
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EQUINOCTIAL ELMENT ODIFFERENCES SATELLITE DMSPBL-6 1234567
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The following plot incorporates a small value for J2 (1.OD-5):
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Appendix D

Additional Software Tree Plots

D.1 Background

As described in Section 4.2.3, this appendix contains plots of routines which fail under

ECSUM1, ECSUM2, ECSUM3, SNGESM, TERM, EVESMI, EVESM2, ODESMI,

ODESM2. These routines are associated to the zonal short periodic model in GTDS.

IECS UM1

GHPO)LY HRMSM1

(END)
IJ L

FNSTEP FUNINT
(END) (END)

Figure D.1 Software Tree for Routines Under ECSUMI
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SECSUIVW

(END) HRMSM2

E1
FNSTEP FUNINT

(END) (END)

Figure D.2 Software Tree for Routines Under ECSUM2

ECSUM3L E
IJPOLY HRMSM3
(END) HRISM

F- ~I

(END) (END)

Figure D.3 Software Tree for Routines Under ECSUM3
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Figure D4 Softwa e Te o RuieMndrSGS

,PoLY j L FUNINTI

(END) (END)

Figure D.A Software Tree for Routines Under SNGESM
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Figure D.5 Software Tree for Routines Under TERM
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EVESM1I

IJPOLY EVHRM1
(END)

FNSTEP
(END) (END)

Figure D.6 Software Tree for Routines Under EVESMI
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(END)

.E -1 II I
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(END) (END)

Figure D.7 Software Tree for Routines Under EVESM2
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Figure D.8 Software Tree for Routines Under ODESMI
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(END

FNSTEP I UNINT
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Figure D.9 Software Tree for Routines Under ODESM2
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Appendix E

Software Tools

E.1 Background

For this thesis, several software tools were developed on the BIGSIM VAX 8820. These

tools are described in Table E. 1:

Table E.1: Software Tools Developed For Thesis

Name Location Function

ACCEL.FOR [DJF 1230.GTDSUN] oGTDS emulation which

computes Cowell

accelerations

ACCEL.FOR [DJF1230.LUNN] -Truth model which

computes Cowell

accelerations using the

recursions from Lundberg

and Schutz [361

GTDS.EXE [DJF1230.CHANGES. oGTDS executable image

CHANGESEXE] which supports 50x50

gravity field models
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DANPOTENTIAL.DAT [DJF1230] -Permanent earth potential

field file for 50x50 class

gravity models (FRN47)

MOON.DAT [DJF 12301 -Stub for permanent lunar

potential field file (FRN48)

NEWCOMB.DAT [RJP9045.NEWCOMBI *Newcomb operator file

which supports 50x50 class

gravity models (FRN23)

DANWHARM.FOR [DJF1230.50BY50. -Places gravity models on

PASSCOM.GRAVDAT. the appropriate permanent

PROULXI potential field file

GCSU2.FOR [DJF1230.50BY50. *Puts GEMT2, GEMT3,

PASSCOM.GRAVDAT. and JGM class gravity

PROULX] models into form required

by DANWHARM

WGSCS.FOR [DJF1230.50BY50. -Puts WGS84 class gravity

PASSCOM.GRAVDAT. models into form required

PROULX] by DANWHARM

HJAC.FOR [DJF1230.RECURSIONS] -Routine to perform stability

testing of Jacobi

polynomials

TEST.FOR [DJF1230.RECURSIONS] -Routine to perform stability

testing of Hansen

Coefficients

WRITENUKES.FOR [RJP9045.FONTE] -Routine which builds

Newcomb operator file
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